Author(s): Shaleeni, Vandana Jhalora, Shubhita Mathur, Renu Bist


DOI: 10.52711/0974-360X.2024.00397   

Address: Shaleeni1, Vandana Jhalora1, Shubhita Mathur2, Renu Bist1
1Centre of Advanced Studies, Department of Zoology, University of Rajasthan, 302004.
2Centre for Converging Technology, University of Rajasthan, Jaipur – 302004.
*Corresponding Author

Published In:   Volume - 17,      Issue - 6,     Year - 2024

Ethidium bromide (EtBr), an intercalating agent that is often employed in molecular biology procedures can bind to the DNA's minor groove, which can result in a variety of undesirable repercussions. EtBr is classified as one of the most lethal carcinogens, which makes its disposal extremely challenging and expensive. Reckless and irresponsible disposal of hazardous items can have severe impacts on the ecosystem and cause the environment's natural resources to wither away. Therefore, our study focuses on the isolation of bacterial isolates from different sources that have biodegradation potential against EtBr. Different bacterial isolates obtained from sewage water, tap water, and soil were grown in Luria Bertani (LB) broth and Nutrient agar (NA), followed by their screening and identification by performing various biochemical tests. All the isolates were grown in two different concentrations of EtBr (i.e., 30 ?g/ml and 60 ?g/ml) to determine their ability to degrade EtBr. For the current investigation, bacterial isolates obtained from the tap water (IS1, IS2, IS3, IS4, IS5, IS6) and sewage water (IS7, IS8, IS9, IS10, IS11, IS12, IS13) have shown degrading potential against EtBr at the concentration of 30µg/ml after 2 and 5 days, respectively, whereas, the bacterial isolates obtained from tap water (IS1, IS2, IS3, IS4, IS5, IS6) and sewage water (IS7, IS8, IS9, IS10, IS11, IS12, IS13) have shown degradation potential against EtBr at the concentration of 60µg/ml after 5 days and 8 days, respectively. All the isolates demonstrated EtBr bioaccumulation and were visible as vivid orange colonies under a UV transilluminator. None of the isolates obtained from the soil sample were able to degrade EtBr. The outcomes of the current investigation suggest that several bacterial isolates which were isolated from tap water and sewage water had remarkable biodegradation capacity against EtBr. The unique ability of bacterial isolates to biodegrade and accumulate EtBr can contribute to the improvement of the quality and safety of our environment. Further research into these isolates' potential for biodegrading various xenobiotics and dangerous substances could be very helpful in reducing the environment's rising toxicant concentrations.

Cite this article:
Shaleeni, Vandana Jhalora, Shubhita Mathur, Renu Bist. Research Journal of Pharmacy and Technology. 2024; 17(6):2541-8. doi: 10.52711/0974-360X.2024.00397

Shaleeni, Vandana Jhalora, Shubhita Mathur, Renu Bist. Research Journal of Pharmacy and Technology. 2024; 17(6):2541-8. doi: 10.52711/0974-360X.2024.00397   Available on:

1.    Ogilvie L, Hirsh P. Microbial ecological theory: current perspectives. Caister Academic Press. 2012.
2.    Gandhi VP, Kesari KK, Kumar A. The Identification of Ethidium Bromide-Degrading Bacteria from Laboratory Gel Electrophoresis Waste. BioTech (Basel). 2022 Feb 24; 11(1): 4. doi: 10.3390/biotech11010004.
3.    Dionisi HM, Chewning CS, Morgan KH, Menn FM, Easter JP, Sayler GS. Abundance of dioxygenase genes similar to Ralstonia sp. strain U2 nagAc is correlated with naphthalene concentrations in coal tar-contaminated freshwater sediments. Appl Environ Microbiol. 2004 Jul; 70(7): 3988-95. doi: 10.1128/AEM.70.7.3988-3995.
4.    Dhananjay D. Chaudhari, Karishma. P. Bhadane, Priyanka. V. Pawar. A Short Review on Carcinogenicity. Asian Journal of Research in Pharmaceutical Sciences. 2023; 13(2): 185-7.
5.    Alexander M. Biodegradation and bioremediation. Gulf Professional Publishing. 1999.
6.    Marinescu M, Dumitru M, Lăcătuşu AR.  Biodegradation of petroleum hydrocarbons in an artificial polluted soil. Res. J.  Agri. Sci. 2009 Jan; 41(2):157-62.
7.    Bennet JW, Wunch KG, Faison BD. Use of fungi in biodegradation. Manual of environmental microbiology, ASM Press, Washington, DC. 2002; 2: 960-71.
8.    Garbisu C, Alkorta I. Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment. Bioresour. Technol. 2001; 77(3): 229-36.  doi: 10.1016/s0960-8524(00)00108-5.
9.    Das N, Chandran P. Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol Res Int. 2011;2011:941810. doi: 10.4061/2011/941810.
10.    Lodato A, Alfieri F, Olivieri G, Di Donato A, Marzocchella A, Salatino P.  Azo-dye conversion by means of Pseudomonas sp. OX1. Enzyme Microb. Technol. 2007;41(5):646-52. doi:10.1016/j.enzmictec.2007.05.017.
11.    Yang T, Ren L, Jia Y, Fan S, Wang J, Wang J, Nahurira R, Wang H, Yan Y. Biodegradation of Di-(2-ethylhexyl) Phthalate by Rhodococcusruber YC-YT1 in Contaminated Water and Soil. Int J Environ Res Public Health. 2018 May 11;15(5):964. doi: 10.3390/ijerph15050964.
12.    Conn HJ. Validity of the Genus Alcaligenes. J Bacteriol. 1942 Sep;44(3):353-60. doi: 10.1128/jb.44.3.353-360.1942.
13.    Satishkumar R, Vertegel A. Charge-directed targeting of antimicrobial protein-nanoparticle conjugates. BiotechnolBioeng. 2008; Jun 15; 100(3): 403-12. doi: 10.1002/bit.21782.
14.    Jai Godheja, S. K. Shekhar, D.R. Modi. Biodegradation of Keratin from Chicken Feathers by Fungal Species as a means of Sustainable Development. Asian J. Pharm. Tech. 2014; Vol. 4: Issue 2; 69-73.                                 
15.    Rajeev Kumar, Nripendra Singh, Ritu Singh. An Introduction of Biodegradable Polymers, Modes of Biodegradation and Designing of Biodegradable Polymers. Research J. Pharm. and Tech. 2017; 10(2): 625-640.
16.    Aissaoui S., Sifour M., Abdelli M., Meribai N., Ouled-Haddar H. Chlorpyrifos biodegradation by a Locally Isolated Bacterium Pseudomonas sp. B5-2. Asian Journal of Research in Chemistry. 2022; 15(2): 115-0.
17.    Muthukrishnan Lakshmipathy, S. V. Abirami, Thukkaram Sudhakar. Biodegradation of Organo Phosphorous Chlorpyrifos using Pseudomonas aeruginosa PF1 isolated from paddy field. Research J. Pharm. and Tech. 2018; 11(5): 1725-1728.
18.    Aissaoui S., Sifour M., Abdelli M., Meribai N., Ouled-Haddar H. Chlorpyrifos biodegradation by a Locally Isolated Bacterium Pseudomonas sp. B5-2. Asian Journal of Research in Chemistry. 2022; 15(2): 115-0.
19.    Sanjana Bhagat, LakheshwarThawait. Bioremediation of Lead by lead resistant bacterial isolates isolated from Contaminated soils of Chhattisgarh. Research J. Pharm. and Tech. 2018; 11(10): 4559-4562.
20.    Muthukumaran P, R. Janani. Isolation and Characterization of Lead (Pd) Resistant Staphylococcus aureus from Tannery Effluent Contaminated Site. Research J. Engineering and Tech. 2013; 4(4): 239-241.
21.    Ashish Kumar Gupta, Deepak Ganjewala, Navodit Goel, Namrata Khurana, Saradindu Ghosh, Abhishek Saxena. Bioremediation of tannery chromium: A microbial approach. Research J. Pharm. and Tech. 2014; 7(1): 118-122.
22.    Vijayalakshmi Kumaravel. Research J. Pharm. and Tech. 2016; 9(4): 445-450.
23.    Olmsted J 3rd, Kearns DR. Mechanism of ethidium bromide fluorescence enhancement on binding to nucleic acids. Biochemistry. 1977; Aug 9; 16(16): 3647-54. doi: 10.1021/bi00635a022.
24.    Saeidnia S, Abdollahi M. Are other fluorescent tags used instead of ethidium bromide safer? Daru. 2013; Dec 19; 21(1): 71. doi: 10.1186/2008-2231-21-71.
25.    Sigmon J. Larcom LL. The effect of ethidium bromide on mobility of DNA fragments in agarose gel electrophoresis. Electrophoresis. 1996; Oct; 17(10): 1524-7. doi: 10.1002/elps.1150171003.
26.    LePecq JB, Paoletti C. A fluorescent complex between ethidium bromide and nucleic acids. Physical-chemical characterization. J. Mol Biol. 1967; Jul 14; 27(1): 87-106. doi: 10.1016/0022-2836(67)90353-1.
27.    Reinhardt CG, Krugh TR. A comparative study of ethidium bromide complexes with dinucleotides and DNA: direct evidence for intercalation and nucleic acid sequence preferences. Biochemistry. 1978; Nov 14; 17(23): 4845-54. doi: 10.1021/bi00616a001.
28.    Salah-Eldin, Alaa-Eldin and Abdullah, Sabreen and Sayed, Alaa El-Din. Antioxidant capacity and DNA damage in Nile tilapia (Oreochromis niloticus) exposed to Ethidium bromide: A protective role for Spirulina Platensis. Scientific African. 2021; 13. doi; 10.1016/j.sciaf.2021.e00961.
29.    Zhang, Chunyongand Liu, Liping and Wang, Jinliang and Rong, Fei and Fu, Degang. Electrochemical degradation of ethidium bromide using boron-doped diamond. Separation and Purification Technology. 2013; 107: 91–101.  doi:10.1016/j.seppur.2013.01.033
30.    Roy Chowdhury A, Bakshi R, Wang J, Yildirir G, Liu B, Pappas-Brown V, Tolun G, Griffith JD, Shapiro TA, Jensen RE, Englund PT. The killing of African trypanosomes by ethidium bromide. PLoSPathog. 2010; Dec 16; 6(12): e1001226. doi: 10.1371/journal.ppat.1001226.
31.    Sukhumungoon P, Rattanachuay P, Hayeebilan F, Kantachote D. Biodegradation of ethidium bromide by Bacillus thuringiensis isolated from soil. Afr. J. Microbiol. Res. 2013; 7(6): 471-6. doi: 10.5897/AJMR12.1642.
32.    Kumar D, Singh AK, Ali MR, Chander Y. Antimicrobial Susceptibility Profile of Extended Spectrum β-Lactamase (ESBL) Producing Escherichia coli from Various Clinical Samples. Infect Dis (Auckl). 2014; Mar 25; 7: 1-8. doi: 10.4137/IDRT.S13820.
33.    Baveja CP. Textbook of microbiology, Arya Publications. 2009. Third edition: -52-58.
34.    Thai LP. Genetic characterization of an Escherichia coli plasmid associated with hydrogen sulfide production and drug resistance. 1977. Doctoral dissertation, Texas Tech University.
35.    Bartholomew JW, Mittwer T. The Gram stain. Bacteriol Rev. 1952; Mar; 16(1):1-29. doi: 10.1128/br.16.1.1-29.1952.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

56th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Recent Articles


Not Available