Author(s): Dmytro Lytkin, Olga Tovchiga, Vladislav Udovitskiy, Olena Barbukho


DOI: 10.52711/0974-360X.2024.00396   

Address: Dmytro Lytkin1*, Olga Tovchiga2,3, Vladislav Udovitskiy4, Olena Barbukho4
1Educational and Scientific Institute of Applied Pharmacy, National University of Pharmacy, Kharkiv, Ukraine
2Medical University of Gdańsk, Gdańsk, the Republic of Poland
3T.G. Shevchenko National University “Chernihiv Collegium,” Chernihiv, Ukraine
4JSC “Farmak,” Kyiv, Ukraine*
*Corresponding Author

Published In:   Volume - 17,      Issue - 6,     Year - 2024

The aim of the study is to determine the efficacy of the innovative coordinative compound of aluminium and N-(2,3-dimethylphenyl)-anthranilic (mefenamic) acid (CCAA, possessing hepatoprotective and antioxidative activity) on the model of chronic alcohol-induced pancreatitis in rats (Lieber–DeCarli isocaloric alcohol liquid diet for 10 weeks + LPS administration once a week for the three last weeks, 3 mg/kg intravenously). CCA was administered for 21 days at doses of 30, 60, and 120 mg/kg intragastrically. Leucocyte content in the peripheral blood and erythrocyte sedimentation rate, basal glycemia, total lipids level, a-amylase and pancreatic elastase activity in blood serum and the duodenal contents as well as histological structure of the pancreas were evaluated. In the blood serum and the homogenate of the pancreas, glutathione content, superoxide dismutase (SOD), catalase, glutathione reductase, glutathione-S-transferase, and glutathione peroxidase activities were measured. The dose-dependent normalizing effect of CCAA was registered by the influence on the non-specific inflammatory markers, pancreatic exocrine function, and cytoarchitectonics of the pancreas (the highest efficacy – at a dose of 120 mg/kg). The normalizing influence on the prooxidant-antioxidant balance markers was not dose-dependent with an especially significant normalizing influence on SOD activity. The results substantiate expanding indications for the of the studied drug.

Cite this article:
Dmytro Lytkin, Olga Tovchiga, Vladislav Udovitskiy, Olena Barbukho. Efficacy of the Coordinative compound of Aluminium and N-(2,3-dimethylphenyl)-anthranilic (mefenamic) acid on the Model of Chronic Alcohol-Induced Pancreatitis. Research Journal of Pharmacy and Technology. 2024; 17(6):2531-0. doi: 10.52711/0974-360X.2024.00396

Dmytro Lytkin, Olga Tovchiga, Vladislav Udovitskiy, Olena Barbukho. Efficacy of the Coordinative compound of Aluminium and N-(2,3-dimethylphenyl)-anthranilic (mefenamic) acid on the Model of Chronic Alcohol-Induced Pancreatitis. Research Journal of Pharmacy and Technology. 2024; 17(6):2531-0. doi: 10.52711/0974-360X.2024.00396   Available on:

1.    Beyer G. Habtezion A, Werner J, Lerch MM, Mayerle J. Chronic pancreatitis. Lancet. 2020; 396(10249): 499-512. doi: 10.1016/S0140-6736(20)31318-0.
2.    Singh VK, Yadav D, Garg PK. Diagnosis and management of chronic pancreatitis: a review. JAMA. 2019; 322(24): 2422-34. doi: 10.1001/jama.2019.19411.
3.    Rasineni K, Srinivasan MP, Balamurugan AN, Kaphalia BS, Wang S, Ding WX, et al. Recent advances in understanding the complexity of alcohol-induced pancreatic dysfunction and pancreatitis development. Biomolecules. 2020; 27; 10(5): 669. doi: 10.3390/biom10050669.
4.    Bharathi S. Management of chronic pancreatitis: A review. Research Journal of Pharmacy and Technology. 2015; 8(8): 1083-6. DOI: 10.5958/0974-360X.2015.00188.2   
5.    Salima KD, Rajesh Gopalakrishna, Renjitha Bhaskaran, Roshni PR. Physician preference of anti-diabetic medications and complications in pancreatic diabetes – an experience from a tertiary care teaching hospital. Research Journal of Pharmacy and Technology. 2019; 12(3): 1075-8. DOI:10.5958/0974-360X.2019.00176.8
6.    Mehta RM, Pandol SJ, Joshi PR. Idiopathic chronic pancreatitis: Beyond antioxidants. World J Gastroenterol. 2021; 27(43): 7423-32. doi: 10.3748/wjg.v27.i43.7423.
7.    Swentek L, Chung D, Ichii H. Antioxidant therapy in pancreatitis. Antioxidants (Basel). 2021; 10(5): 657. doi: 10.3390/antiox10050657.
8.    Kojayan GG, Alizadeh RF, Li S, Ichii H. Reducing pancreatic fibrosis using antioxidant therapy targeting Nrf2 antioxidant pathway: a possible treatment for chronic pancreatitis. Pancreas. 2019; 48(10): 1259-62. doi: 10.1097/MPA.0000000000001433.
9.    Coordinative compound of aluminium and N-(2,3-dimethylphenyl)-anthranilic (mefenamic) acid. Characteristics, official datasheet and leaflets. [document on the Internet].  Compendium official database [updated 2017 July 14; cited 2023 Oct 19]. Available from: . [Resource in Ukrainian]
10.    Borodina ТV. The comparative analysis of anthral®, thiotriasolin, flamin, cholosas and silibor effectiveness for treatment of liver diseases of various genesis (experimental and clinical research). Ph.D. [Dissertation], Kyiv: Institute of Pharmacology and Toxicology, 1999.
11.    Useini L, Mojić M, Laube M, Lönnecke P, Dahme J, Sárosi MB, et al. Carboranyl analogues of mefenamic acid and their biological evaluation. ACS Omega. 2022; 7(28): 24282-91. doi: 10.1021/acsomega.2c01523.
12.    Vaibhav Changediya, Rupalben Jani, Pradip Kakde. Development and evaluation of mefenamic acid nanoemulsion. Research Journal of Pharmacy and Technology. 2021; 14(2): 1003-7. DOI: 10.5958/0974-360X.2021.00179.7
13.    Nachammai K, Keerthi G S Nair, Ramaiyan Velmurugan, Sathesh Kumar S Pavithra K. Sustained – release study on mefenamic acid and mosapride loaded solid lipid nanoparticles: in vitro characterization. Research Journal of Pharmacy and Technology. 2020; 13(11): 5391-5. DOI:10.5958/0974-360X.2020.00943.9
14.    Sachin N. Kothawade, Ashwini Ishware, Priyanka Darekar, Amit S. Lunkad. Formulation and evaluation of sustained release matrix tablet of mefenamic acid. Res. J. Pharm. Dosage Form. and Tech. 2014; 6(4): 249-52.
15.    Grigorieva GS, Kirichok LM, Konakhovich NF, Mislіviets SO, Mokhort MA. Forming of coordination compounds as a way of increasing the safety of trace elements. Modern problems of toxicology (Kyiv). 1998; 1: 21-3. Available from:
16.    Tarushi A, Geromichalos GD, Kessissoglou DP, Psomas G. Manganese coordination compounds of mefenamic acid: In vitro screening and in silico prediction of biological activity. J Inorg Biochem. 2019; 190:1-14. DOI:10.1016/j.jinorgbio.2018.09.017
17.    Kovala-Demertzi D, Hadjipavlou-Litina D, Staninska M, Primikiri A, Kotoglou C, Demertzis MA. Anti- oxidant, in vitro, in vivo anti-inflammatory activity and antiproliferative activity of mefenamic acid and its metal complexes with manganese(II), cobalt(II), nickel(II), copper(II) and zinc(II). J Enz Inh Med Chem. 2009; 24(3): 742-52. DOI: 10.1080/14756360802361589
18.    Tarushi A, Karaflou Z, Kljun J, Turel I, Psomas G, Papadopoulos AN, et al. Antioxidant capacity and DNA-interaction studies of zinc complexes with a non-steroidal anti-inflammatory drug, mefenamic acid. J Inorg Biochem. 2013; 128: 85-96. DOI: 10.1016/j.jinorgbio.2013.07.013
19.    Aghdassi AA, Mayerle J, Christochowitz S, Weiss FU, Sendler M, Lerch MM. Animal models for investigating chronic pancreatitis. Fibrogenesis Tissue Repair. 2011; 4(1): 26. DOI: 10.1186/1755-1536-4-26
20.    Hyun JJ, Lee HS. Experimental models of pancreatitis. Clin Endosc. 2014; 47(3):212-16. DOI: 10.5946/ce.2014.47.3.212
21.    Anamika R, Gorelick F. Animal models of chronic pancreatitis. In: Pancreapedia: Exocrine Pancreas Knowledge Base. 2014. DOI: 10.3998/panc.2014.1.
22.    Vonlaufen A. Modeling alcoholic pancreatitis by ethanol feeding and lipopolysaccharide (LPS) challenge. In: Pancreapedia: Exocrine Pancreas Knowledge Base. 2011. DOI: 10.3998/panc.2011.27.
23.    Piccinin MA, Schwartz J. Histology, Verhoeff Stain. [Updated 2021 May 10]. In: StatPearls [document on the Internet, updated 2022; cited 2023 Oct 19]. Available from:
24.    Green MR, Sambrook J. Estimation of cell number by hemocytometry counting. Cold Spring Harb Protoc. 2019; 1; 2019(11). DOI: 10.1101/pdb.prot097980
25.    Marrocco I, Altieri F, Peluso I. Measurement and clinical significance of biomarkers of oxidative stress in humans. Oxid Med Cell Longev. 2017; 2017: 6501046. DOI: 10.1155/2017/6501046
26.    Indrayan A, Malhotra KR. Medical Biostatistics. 4th ed. Boca Raton: CRC Press; 2018.
27.    Nummer SA, Weeden AJ, Shaw C, Snyder BK, Bridgeman TB, Qian SS. Updating the ELISA standard curve fitting process to reduce uncertainty in estimated microcystin concentrations. MethodsX. 2018; 12; 5: 304-11. DOI: 10.1016/j.mex.2018.03.011
28.    Monika G. Shinde, Kaufiya D. Sayyad, Ganesh V. Swami, Priti B. Savant, Pooja R. Yalmar, Swati T. Mane. A review on inflammation and its pharmacotherapy. Asian Journal of Pharmacy and Technology. 2023; 13(3): 201-6. DOI: 10.52711/2231-5713.2023.00036
29.    Prithviraj Chakraborty, Suresh Kumar, Debarupa Dutta, Vikas Gupta. Role of antioxidants in common health diseases. Research Journal of Pharmacy and Technology. 2009; 2(2): 238-44.
30.    Vadivelan R, Dhanabal SP, Raja Rajeswari, Shanish A, Elango K, Suresh B. Oxidative stress in diabetes- a key therapeutic agent. Research J. Pharmacology and Pharmacodynamics. 2010; 2(3): 221-7.
31.    Sadiq Al-Mansury, Mohammed A. Aboktifa, Adnan M Jassim, Asim A. Balakit, Fatin Fadhel Alkazazz. Evaluation the antioxidant enzymes activity in adults male rats treated with some new 3-mercapto1,2,4-triazole derivatives. Research Journal of Pharmacy and Technology. 2022; 15(1): 224-8. DOI: 10.52711/0974-360X.2022.0003
32.    Singhal SS, Singh SP, Singhal P, Horne D, Singhal J, Awasthi S. Antioxidant role of glutathione S-transferases: 4-Hydroxynonenal, a key molecule in stress-mediated signaling. Toxicol Appl Pharmacol. 2015; 289(3): 361-70. DOI: 10.1016/j.taap.2015.10.006
33.    Hayeshi R, Mutingwende I, Mavengere W, Masiyanise V, Mukanganyama S. The inhibition of human glutathione S-transferases activity by plant polyphenolic compounds ellagic acid and curcumin. Food Chem Toxicol. 2007; 45(2): 286-95. DOI: 10.1016/j.fct.2006.07.027
34.    Appiah-Opong R, Commandeur JN, Istyastono E, Bogaards JJ, Vermeulen NP. Inhibition of human glutathione S-transferases by curcumin and analogues. Xenobiotica. 2009; 39(4): 302-11. DOI: 10.1080/00498250802702316
35.    Soujanya K, Chandra Shekar C. Studying the inhibition activity of rutin on xenobiotic inducible lambda-class glutathione transferases (GSTLs) along with its 2d- and 3d pharmacophore pattern. Research Journal of Pharmacy and Technology 2023; 16(4): 1940-4. DOI: 10.52711/0974-360X.2023.00318
36.    Black O Jr, Howerton BK. Glutathione S-transferase activity in rat pancreas. J Natl Cancer Inst. 1984; 72(1): 121-3. DOI: 10.1093/jnci/72.1.121

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

56th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Recent Articles


Not Available