Author(s): Riska Surya Ningrum, Elga Renjana, Aisyah Hadi Ramadani, Yudhi Dwi Kurniawan, Mahani, Oktan Dwi Nurhayat

Email(s): riska.surya.ningrum@brin.go.id , elga001@brin.go.id , aisyahramadani47@gmail.com , yudhi.dwi.kurniawan@brin.go.id , mahani2018@unpad.ac.id , oktan.dwi.nurhayat@brin.go.id

DOI: 10.52711/0974-360X.2024.00395   

Address: Riska Surya Ningrum1, Elga Renjana2, Aisyah Hadi Ramadani3, Yudhi Dwi Kurniawan4, Mahani5, Oktan Dwi Nurhayat6
1Research Center for Biomass and Bioproducts, National Research and Innovation Agency, Jl. Raya Bogor Km.46 Cibinong, West Java, Indonesia.
2Research Center for Applied Botany, National Research and Innovation Agency, Jl. Raya Bogor Km.46 Cibinong, West Java, Indonesia.
3Department of Biology, Faculty of Science, Technology and Education, University of Muhammadiyah Lamongan, Jl. Plalangan, Wahyu, Plosowahyu, Lamongan, East Java, Indonesia.
4Research Center for Pharmaceutical Ingredient and Traditional Medicine, National Research and Innovation Agency, Jl. Raya Bogor Km.46 Cibinong, West Java, Indonesia.
5Food Technology Department, Faculty of Agric Industrial Technology, Padjadjaran University, West Java, Indonesia.
6Research Center for Applied Microbiology, National Research and Innovation Agency, Jl. Raya Bogor Km.46 Cibinong, West Java, Indonesia.
*Correspondi

Published In:   Volume - 17,      Issue - 6,     Year - 2024


ABSTRACT:
Propolis, an extremely sticky and resinous substance collected by honeybees, has been widely used as a health food, antioxidant, and antimicrobial. Utilization of propolis as nutraceutical depends on the bioactive compounds contained therein. The plant source, type of bees, and region of honeybees are the main factors affecting the chemical composition of the bioactive compounds in propolis. This study aims to determine the bioactive compounds in propolis from Wallacetrigona incisa using LC-MS/MS and to analyze their antibacterial activity by in vitro and molecular docking approach. A series of propolis with different concentration (5, 7.5, 10, 20, 30, and 100 % w/v) were tested against five bacteria (P. acnes, S. aureus, S. epidermidis, B. subtilis, and E. coli) using disk diffusion method. The inhibition mechanism against the bacteria was studied by molecular docking approach. For the LC-MS/MS analysis, seven bioactive compounds were detected in the propolis from W. incisa: ganoderic acid R, mulberranol, schizandrin A (deoxyschizandrin), neoquassin, octahydrocurcumin, isorhamnetin, and 2-methoxyanofinic acid. Moreover, for the antibacterial activity, propolis has strong inhibition at concentration of 30% and 100%, and better efficacy on Gram-positive bacterial species (S. epidermidis, B. subtilis, S. aureus, P. acnes) than gram-negative bacterial (E. coli). Ganoderic acid R and mulberranol were found to be the most potential bioactive compounds of the propolis as antibacterial agents due to their good performance in interacting with target proteins of bacteria.


Cite this article:
Riska Surya Ningrum, Elga Renjana, Aisyah Hadi Ramadani, Yudhi Dwi Kurniawan, Mahani, Oktan Dwi Nurhayat. Bioactive Compounds in Propolis from Wallacetrigona incisa and Their Application as Antibacterial Agent: In vitro and Molecular Docking Approach. Research Journal of Pharmacy and Technology. 2024; 17(6):2522-0. doi: 10.52711/0974-360X.2024.00395

Cite(Electronic):
Riska Surya Ningrum, Elga Renjana, Aisyah Hadi Ramadani, Yudhi Dwi Kurniawan, Mahani, Oktan Dwi Nurhayat. Bioactive Compounds in Propolis from Wallacetrigona incisa and Their Application as Antibacterial Agent: In vitro and Molecular Docking Approach. Research Journal of Pharmacy and Technology. 2024; 17(6):2522-0. doi: 10.52711/0974-360X.2024.00395   Available on: https://rjptonline.org/AbstractView.aspx?PID=2024-17-6-14


REFERENCES:
1.    Hossain R, Quispe C, Khan RA, Saikat ASM, Ray P, Ongalbek D, Yeskaliyeva B, Jain D, Smeriglio A, Trombetta D, et al. Propolis : An update on its chemistry and pharmacological applications. Chin. Med. 2022; 17(100): 1–60. doi.org/10.1186/s13020-022-00651-2
2.    Zullkiflee N, Taha H, Usman A. Propolis : Its Role and Efficacy in Human Health and Diseases. Molecules. 2022; 27(6120):1–21. doi.org/https://doi.org/10.3390/molecules27186120
3.    Kapare HS, Sathiyanarayanan L. Nutritional and Therapeutic potential of Propolis: A Review. Res. J. Pharm. Technol. 2020; 13(7): 3545–3549. doi.org/10.5958/0974-360X.2020.00627.7
4.    Falcão SI, Vale N, Gomes P, Domingues MRM, Freire C, Cardoso SM, Vilas-boas M. Phenolic Profiling of Portuguese Propolis by LC–MS Spectrometry: Uncommon Propolis Rich in Flavonoid Glycosides. Phytochem. Anal. 2013; 24(4): 309–318. doi.org/10.1002/pca.2412
5.    Popova M, Trusheva B, Antonova D, Cutajar S, Mifsud D, Farrugia C, Tsvetkova I, Najdenski H, Bankova V. The specific chemical profile of Mediterranean propolis from Malta. Food Chem. 2011; 126: 1431–1435. doi.org/10.1016/j.foodchem.2010.11.130
6.    Bankova V, Popova M, Trusheva B. Plant Sources of Propolis : an Update from a Chemist’s Point of View. Nat. Prod. Commun. 2006; 1(11): 1023–1028.
7.    Medana C, Carbone F, Aigotti R, Appendino G, Baiocchi C. Selective Analysis of Phenolic Compounds in Propolis by HPLC-MS/MS. Phytochem. Anal. 2008; 19: 32–39. doi.org/10.1002/pca.1010
8.    Pellati F, Orlandini G, Pinetti D, Benvenuti S. HPLC-DAD and HPLC-ESI-MS / MS methods for metabolite profiling of propolis extracts. J. Pharm. Biomed. Anal. 2011; 55: 934–948. doi.org/10.1016/j.jpba.2011.03.024
9.    Falcão SI, Lopes M, Vilas-boas M. A First Approach to the Chemical Composition and Antioxidant Potential of Guinea-Bissau Propolis. Nat. Prod. Commun. 2019: 1–5. doi.org/10.1177/1934578X19844138
10.    Nichitoi MM, Costache T, Josceanu AM, Isopescu R, Isopencu G, Lavric V. Development and Application of an LC-MS/MS Method for Identification of Polyphenols in Propolis Extract. Proceedings. 2020; 55(10): 1–5. doi.org/10.3390/proceedings2020055010
11.    K P, A AD, K P, A MS. An Overview : LC-MS as Tool of sample Extraction and Quantification in Bioanalytical Laboratories. Asian J. Pharm. Anal. 2020; 10(3): 165–166. doi.org/10.5958/2231-5675.2020.00030.7
12.    Gelb MH, Basheeruddin K, Burlina A, Chen H, Chien Y, Dizikes G, Dorley C, Giugliani R, Hietala A, Hong X, et al. Liquid Chromatography – Tandem Mass Spectrometry in Newborn Screening Laboratories. Int. J. Naonatal Screen. 2022; 8(62): 1–15. doi.org/doi.org/10.3390/ ijns8040062
13.    Adaway JE, Keevil BG, Owen LJ. Liquid chromatography tandem mass spectrometry in the clinical laboratory. Ann. Clin. Biochem. 2015; 52(1): 18–38. doi.org/10.1177/0004563214557678
14.    Braakhuis A. Evidence on the Health Benefits of Supplemental Propolis. Nutrients. 2019; 11(2705): 1–15. doi.org/10.3390/nu11112705
15.    Przybyłek I, Karpinski TM. Antibacterial Properties of Propolis. Molecules. 2019; 24(2047): 1–17. doi.org/10.3390/molecules24112047
16.    Sharma N, Sanadhya S, Nagarajappa R, Ramesh G, Naik D. Antifungal activity of Propolis, Fluconazole and Chlorhexidine against Oral Candida albicans – A Comparative in-vitro Study. Res. J. Pharm. Technol. 2022; 15(8): 3589–3594. doi.org/10.52711/0974-360X.2022.00601
17.    Guzman JD. Natural Cinnamic Acids, Synthetic Derivatives and Hybrids with Antimicrobial Activity. Molecules. 2014; 19: 19292–19349. doi.org/10.3390/molecules191219292
18.    Kalia P, Kumar NR, Harjai K. Preventive effect of Honey bee propolis on Salmonella enterica serovar Typhimurium infected BALB / c mice : A Hematological Study. Res. J. Pharm. Technol. 2020; 13(7): 3389–3391. doi.org/10.5958/0974-360X.2020.00602.2
19.    Veloz JJ, Alvear M, Salazar LA. Antimicrobial and Antibiofilm Activity against Streptococcus mutans of Individual and Mixtures of the Main Polyphenolic Compounds Found in Chilean Propolis. Biomed Res. Int. 2019; 7602343: 1–8. doi.org/https://doi.org/10.1155/2019/7602343
20.    Kharsany K, Viljoen A, Leonard C, Vuuren S Van. The new buzz : Investigating the antimicrobial interactions between bioactive compounds found in South African propolis. J. Ethnopharmacol. 2019; 238: 111867. doi.org/10.1016/j.jep.2019.111867
21.    Yilmaz S, Sova M, Ergun S. Antimicrobial Activity of Trans-Cinnamic Acid and Commonly Used Antibiotics Against Important Fish Pathogens and Non-Pathogenic Isolates. J. Appl. Microbiol. 2018; 125(6): 1714–1727. doi.org/10.1111/jam.14097
22.    Almuhayawi MS. Saudi Journal of Biological Sciences Propolis as a novel antibacterial agent. Saudi J. Biol. Sci. 2020; 27(11): 3079–3086. doi.org/10.1016/j.sjbs.2020.09.016
23.    Olegario LS, Andrade JKS, Andrade GRS, Denadai M, Cavalcanti RL, Silva MAAP da, Narain N. Chemical characterization of four Brazilian brown propolis : An insight in tracking of its geographical location of production and quality control. Food Res. Int. 2019; 123: 481–502. doi.org/10.1016/j.foodres.2019.04.004
24.    Alanazi S, Alenzi N, Alenazi F, Tabassum H, Watson D. Chemical characterization of Saudi propolis and its antiparasitic and anticancer properties. Sci. Rep. 2021; 11(5390): 1–9. doi.org/10.1038/s41598-021-84717-5
25.    Yunta MJR. Docking and Ligand Binding Affinity : Uses and Pitfalls. Am. J. Model. Optim. 2016; 4(3): 74–114. doi.org/10.12691/ajmo-4-3-2
26.    Abishad P, Niveditha P, Unni V, Vergis J, Kurkure NV, Chaudhari S, Rawool DB, Barbuddhe SB. In silico molecular docking and in vitro antimicrobial efficacy of phytochemicals against multi‑drug‑resistant enteroaggregative Escherichia coli and non‑typhoidal Salmonella. Gut Pathog. 2021; 13(46): 1–11. doi.org/10.1186/s13099-021-00443-3
27.    Ekins S, Mestres J, Testa B. In silico pharmacology for drug discovery applications to targets and beyond. Br. J. Pharmacol. 2007; 152: 21–37.
28.    Trott O, Olson A. Autodock Vina: improving the speed and accuracy of docking with a scoring function, efficient optimazion and multithrearing. J. Comput. Chem. 2010; 31(2): 455–461. doi.org/10.1002/jcc.21334.AutoDock
29.    Mahani, Faturachman F, Michelle, Lembong E, Sulaeman A, Hardinsyah, Nurjanah N, Sunarno, Sariadji K. Antiemetic Activities of Indonesian Stingless Bee Propolis on Emetic Induced By Anti-Tuberculosis Drugs. Int. J. Pharm. Pharm. Sci. 2021; 13(4): 39–44.
30.    Rosalina R, Ningrum RS, Lukis PA. Aktifitas Antibakteri Ekstrak Jamur Endofit Mangga Podang (Mangifera indica L.) Asal Kabupaten Kediri Jawa Timur. Maj. Ilm. Biol. Biosf. A Sci. J. 2018; 35(3): 139–144. doi.org/10.20884/1.mib.2018.35.3.757
31.    Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer FT, Beer TAP De, Rempfer C, Bordoli L, et al. SWISS-MODEL : homology modelling of protein structures and complexes. Nucleic Acids Res. 2018; 46(1): 296–303. doi.org/10.1093/nar/gky427
32.    Pawar RP, Rohane SH. Role of Autodock vina in PyRx Molecular Docking. Asian J. Res. Chem. 2021; 14(2): 132–134. doi.org/10.5958/0974-4150.2021.00024.9
33.    Volkamer A, Griewel A, Grombacher T, Rarey M. Analyzing the Topology of Active Sites: On the Prediction of Pockets and Subpockets. J Chem Inf Model. 2010; 50: 2041–2052. doi.org/https://doi.org/10.1021/ci100241y
34.    Fricker PC, Gastreich M, Rarey M. Automated Drawing of Structural Molecular Formulas under Constraints. J Chem Inf Comput Sci. 2004; 44(3): 1065–1078. doi.org/DOI: https://doi.org/10.1021/ci049958u
35.    Mayslich C, Grange PA, Castela M, Marcelin AG, Calvez V, Dupin N. Characterization of a Cutibacterium acnes Camp Factor 1-Related Peptide as a New TLR-2 Modulator in In Vitro and Ex Vivo Models of Inflammation. Int. J. Mol. Sci. 2022; 23(9): 5065. doi.org/https://doi.org/10.3390/ijms23095065
36.    Ragi K, Kakkassery JT, Raphael VP, Johnson R, K VT. In vitro antibacterial and in silico docking studies of two Schiff bases on Staphylococcus aureus and its target proteins. Futur. J. Pharm. Sci. 2021; 7(78): 1–9. doi.org/https://doi.org/10.1186/s43094-021-00225-3
37.    Alabdullatif M, Ramirez-arcos S. Biofilm-associated accumulation-associated protein (Aap): A contributing factor to the predominant growth of Staphylococcus epidermidis in platelet concentrates. VoxSanguinis. 2019; 114(1): 28–37.
38.    Sharavanan VJ, Sivaramakrishnan M, Kothandan R, Muthusamy S, Kandaswamy K. Molecular Docking Studies of Phytochemicals from Leucas aspera Targeting Escherichia coli and Bacillus subtilis Subcellular Proteins. Pharmacogn J. 2019; 11(2): 278–285. doi.org/10.5530/pj.2019.11.43 Article
39.    Balingui CF, Noel NJ, Emmanuel T, Benoit NM, Gervais HM, Boubakary A. LC-MS Analysis, Total Phenolics Content, Phytochemical Study and DPPH Antiradical Scavenging Activity of Two Cameroonian Propolis Samples. Med. Chem. (Los. Angeles). 2019;9(8):100–106.
40.    Nichitoi MM, Josceanu AM, Isopescu RD, Isopencu G, Lavric V. Romanian Propolis Extracts : Characterization and Statistical Analysis And Modelling. U.P.B. Sci. Bull., Ser. B. 2019;81(4):149–162.
41.    Duru ME, Çayan GT. Biologically Active Terpenoids from Mushroom origin : A Review. ACG Publ. 2015; 9(4): 456–483.
42.    Rahangdale P, Wankhade AM, Vyas J V, Paithnakar V. A Review on Management of Varius Disease by Traditional Chinese Medicine G anoderma lucidum. Res. J. Pharmacogn. Phytochem. 2023; 15(2): 167–172. doi.org/10.52711/0975-4385.2023.00026
43.    Diehl C, Reznichenko N, Casero R, Faenza L, Cuffini C, Palacios S. Novel antibacterial, antifungal and antiparasitic activities of Quassia amara wood extract. Int. J. Pharmacol. Phytochem. Ethnomedicine. 2016; 2: 62–71.
44.    Jiang L, Li H, Wang L, Song Z, Shi L, Li W, Deng X, Wang J. Isorhamnetin Attenuates Staphylococcus aureus -Induced Lung Cell Injury by Inhibiting Alpha-Hemolysin Expression. J.Microbiol.Biotechnol. 2016; 26(3): 596–602.
45.    Habtamu A, Melaku Y. Antibacterial and Antioxidant Compounds from the Flower Extracts of Vernonia amygdalina. Adv. Pharmacol. Sci. 2018; 4083736: 1–6. doi.org/10.1155/2018/4083736
46.    Gong G, Guan Y, Zhang Z, Rahman K, Wang S, Zhou S, Luan X, Zhang H. Isorhamnetin : A review of pharmacological effects. Biomed. Pharmacother. 2020; 128: 110301. doi.org/10.1016/j.biopha.2020.110301
47.    Kandakumar S, Manju D V. Pharmacological Applications of Isorhamnetin: A Short Review. Int. J. Trend Sci. Res. Dev. 2017; 1(4): 672–678.
48.    Ren X, Bao Y, Zhu Y, Liu S, Peng Z, Zhang Y, Zhou G. Isorhamnetin, Hispidulin, and Cirsimaritin Identified in Tamarix ramosissima Barks from Southern Xinjiang and Their Antioxidant and Antimicrobial Activities. Molecules. 2019; 24(390): 1–15. doi.org/10.3390/molecules24030390
49.    Chauhan AK, Kim J, Lee Y, Balasubramanian PK, Kim Y. Isorhamnetin Has Potential for the Treatment of Escherichia coli -Induced Sepsis. Molecules. 2019; 24(3984): 1–13. doi.org/doi:10.3390/molecules24213984
50.    Abubakar M, Mehvish R, Shahid S. Novel Pharmacological Activities and Agents of Morusalba. Int. J. Res. Pharm. Chem. 2020; 10(4): 318–330. doi.org/https://dx.doi.org/ 10.33289/IJRPC.10.4.2020.10(78)
51.    Intan AEK, Zahro L. Pharmacological Activities Of Schisandra Chinensis. J. Info Kesehat. 2020; 10(1): 244–252.
52.    Bargah RK, Kushwaha A, Tirkey A, Hariwanshi B. In Vitro Antioxidant and Antibacterial Screening of flowers Extract from Cassia auriculata Linn. Res. J. Pharm. Technol. 2020;13(6): 2624–2628. doi.org/10.5958/0974-360X.2020.00466.7
53.    Cui SM, Li T, Wang Q, He KK, Zheng YM, Liang HY, Song LY. Antibacterial Effects of Schisandra chinensis Extract on Escherichia coli and its Applications in Cosmetic. Curr. Microbiol. 2020; 77: 865–874.  
54.    Pandey A, Chaturvedi M, Mishra S, Kumar P, Somvanshi P, Chaturvedi R. Reductive metabolites of curcumin and their therapeutic effects. Heliyon. 2020; 6: e05469. doi.org/10.1016/j.heliyon.2020.e05469
55.    Morris GM, Lim-Wilby M. Molecular Modeling of Proteins. Methods Molecular BiologyTM. In: Molecular Docking. In: Kukol, A. (eds). 443rd ed. UK: Humana Press; 2008. 1–389.
56.    Patil NS, Rohane SH. Organization of Swiss Dock : In study of Computational and Molecular Docking Study. J. Res. Chem. 2021;14(2):145–148. doi.org/10.5958/0974-4150.2021.00027.4
57.    Satpute UM, Rohane SH. Efficiency of AUTODOCK: Insilico study of Pharmaceutical Drug Molecules. Asian J. Res. Chem. 2021;14(1):92–94. doi.org/10.5958/0974-4150.2021.00016.X
58.    Bagal A, Borkar T, Ghige T, Kulkarni A, Kumbhar A, Devane G, Rohane S. Molecular Docking – Useful Tool in Drug Discovery. Asian J. Res. Chem. 2022; 15(2): 129–132.
59.    Shiao M-S, Lin L-J, Yeh S-F, Chou C-S. Two new triterpenes of the fungus Ganoderma lucidum. J. Nat. Prod. 1987; 50(5): 886–890. doi.org/doi:10.1021/np50053a019
60.    Rama Rao AV, Deshpande V, Shastri RK, Tavale SS, Dhaneshwar NN. Structures of albanols A and B, two novel phenols from Morus alba bark. Tetrahedron Lett. 1983; 24(29): 3013–3016. doi.org/doi:10.1016/s0040-4039(00)88083-1
61.    Kim K, Chung W, Kim Y, Kim K, Lee I, Park JY, Jeong H, Na Y, Lee C, Jang H. Transcriptomic Analysis Reveals Wound Healing of Morus alba Root Extract by Up-Regulating Keratin Filament and CXCL12/CXCR4 Signaling. Phyther. Res. 2015; 29(8): 1251–1258. doi.org/doi:10.1002/ptr.5375
62.    Tran HNK, Nguyen VT, Kim JA, Rho SS, Woo MH, Choi JS, Lee JH, Min BS. Anti-inflammatory activities of compounds from twigs of Morus alba. Fitoterapia. 2017; 120: 17–24. doi.org/10.1016/j.fitote.2017.05.004

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags


Not Available