ABSTRACT:
The aim of this study was to explore the antibacterial and antioxidant properties of methanolic extracts obtained from seven distinct medicinal plants, namely Phlomis brachyodon, Salvia dominica, Hypericum triquetrifolium, Origanum majorana, Foeniculum vulgare, Glycyrrhiza glabra, and Curcuma longa. To assess antibacterial activity, the study employed in vitro testing methods such as disc diffusion and serial dilution techniques. Simultaneously, antioxidant capacity was evaluated using the DPPH and FRAP methods, while the quantification of total phenolic compounds was performed utilizing the Folin-Ciocalteu method. The findings unveiled notable variations in the antibacterial and antioxidant properties, as well as phenolic content, among the tested plant extracts. Among the seven plants investigated, H. triquetrifolium demonstrated the most potent antibacterial effects against all tested bacterial strains, closely followed by S. dominica. Intriguingly, the methanolic extracts exhibited a higher susceptibility of Gram-positive bacteria in comparison to Gram-negative ones. Additionally, the exploration of antioxidant capacity and polyphenolic content revealed that H. triquetrifolium show cased the highest levels of antioxidant activity and contained the greatest quantity of phenolic compounds (422±20mg GA/g dry extract). Furthermore, a positive linear correlation was established between antioxidant activity and total phenolic content. In summary, the methanolic extracts sourced from H. triquetrifolium exhibit substantial potential as natural reservoirs for effective antibacterial and antioxidant agents.
Cite this article:
Ibrahim Alfarrayeh. The Antibacterial and Antioxidant properties of Methanolic extracts of Selected Medicinal Plants in Jordanian Folk Medicine in Relation to their Phenolic content. Research Journal of Pharmacy and Technology. 2024; 17(5):2247-5. doi: 10.52711/0974-360X.2024.00354
Cite(Electronic):
Ibrahim Alfarrayeh. The Antibacterial and Antioxidant properties of Methanolic extracts of Selected Medicinal Plants in Jordanian Folk Medicine in Relation to their Phenolic content. Research Journal of Pharmacy and Technology. 2024; 17(5):2247-5. doi: 10.52711/0974-360X.2024.00354 Available on: https://rjptonline.org/AbstractView.aspx?PID=2024-17-5-50
REFERENCES:
1. Alfarrayeh I. Aloshoush A. Ahmad A. Al Qaisi Y. Survey of medicinal plants sold in local markets in Ghor As-Safi, Southern Jordan. Medicinal Plants-International Journal of Phytomedicines and Related Industries. 2022; 14(2): 340-3. http://dx.doi.org/10.5958/0975-6892.2022.00039.9
2. Husein NF. Al-Tarawneh AA. Al-Rawashdeh SR. Khleifat K. Al-Limoun M. Alfarrayeh I. Awwad AE. Za’al AlSarayreh A. Al-Qaisi YT. Ruta graveolens methanol extract, fungal-mediated biosynthesized silver nanoparticles, and their combinations inhibit pathogenic bacteria. Journal of Advanced Pharmacy Education & Research. 2023; 13(2): 43-52. https://japer.in/storage/files/article/154c637b-d485-4543-b99e-02882d18a3a1-RKzdVCGdd5T5lvk7/japer-vol-13-iss-2-43-52-8161.pdf
3. Alsarayreh AZ. Oran SA. Shakhanbeh JM. Khleifat KM. Al Qaisi YT. Alfarrayeh II. Alkaramseh AM. Efficacy of methanolic extracts of some medicinal plants on wound healing in diabetic rats. Heliyon. 2022: e10071. https://doi.org/10.1016/j.heliyon.2022.e10071
4. Alfarrayeh I. Tarawneh K. Almajali D. Al-Awaida W. Evaluation of the Antibacterial and Antioxidant properties of the Methanolic extracts of four Medicinal plants selected from Wadi Al-Karak, Jordan related to their Phenolic contents. Research Journal of Pharmacy and Technology. 2022; 15(5): 2110-6. https://doi.org/10.52711/0974-360X.2022.00350
5. Alqaraleh S. Mehyar GF. Alqaraleh M. Awaisheh SS. Rahahleh RJ. Antibacterial and Antioxidant Activities of Extracts from Selected Wild Plant Species Found in Jordan. Tropical Journal of Natural Product Research. 2023; 7(3): 2520–4. http://www.doi.org/10.26538/tjnpr/v7i3.8
6. Alfarrayeh I. Fekete C. Gazdag Z. Papp G. Propolis ethanolic extract has double-face in vitro effect on the planktonic growth and biofilm formation of some commercial probiotics. Saudi Journal of Biological Sciences. 2021; 28(1): 1033-9. https://doi.org/10.1016/j.sjbs.2020.11.047
7. Das TT. Role of antioxidants in health and diseases-a review. Research Journal of Pharmacy and Technology. 2015; 8(8): 1033-7. http://dx.doi.org/10.5958/0974-360X.2015.00176.6
8. Birben E. Sahiner UM. Sackesen C. Erzurum S. Kalayci O. Oxidative stress and antioxidant defense. World Allergy Organization Journal. 2012; 5: 9-19. https://link.springer.com/article/10.1097/WOX.0b013e3182439613
9. Al Qaisi YT. Khleifat KM. Alfarrayeh II. Alsarayreh AZ. In Vivo Therapeutic Effect of Some Medicinal Plants’ Methanolic Extracts on the Growth and Development of Secondary Hydatid Cyst Infection. Acta Parasitologica. 2022; 67(4): 1521-34. https://doi.org/10.1007/s11686-022-00605-6
10. Manessis G. Kalogianni AI. Lazou T. Moschovas M. Bossis I. Gelasakis AI. Plant-derived natural antioxidants in meat and meat products. Antioxidants. 2020;9(12):1215-45. https://doi.org/10.3390/antiox9121215
11. Michalak M. Plant-derived antioxidants: Significance in skin health and the ageing process. International Journal of Molecular Sciences. 2022; 23(2): 585-614. https://doi.org/10.3390/ijms23020585
12. Barberis A. Deiana M. Spissu Y. Azara E. Fadda A. Serra PA. D’hallewin G. Pisano M. Serreli G. Orrù G. Antioxidant, antimicrobial, and other biological properties of Pompia juice. Molecules. 2020; 25(14): 3186-203. https://doi.org/10.3390/molecules25143186
13. Bobinaitė R. Grootaert C. Van Camp J. Šarkinas A. Liaudanskas M. Žvikas V. Viškelis P. Venskutonis PR. Chemical composition, antioxidant, antimicrobial and antiproliferative activities of the extracts isolated from the pomace of rowanberry (Sorbus aucuparia L.). Food Research International. 2020; 136: 109310. https://doi.org/10.1016/j.foodres.2020.109310
14. Magharbeh M. Al-Hujran T. Al-Jaafreh A. Alfarrayeh I. Sherif. E. Phytochemical Screening and in vitro antioxidant and antiurolithic activities of Coffea arabica. Research Journal of Chemistry and Environment. 2020; 24(12): 109-14. https://www.researchgate.net/publication/346328098_Phytochemical_Screening_and_in_vitro_antioxidant_and_antiurolithic_activities_of_Coffea_arabica
15. Estévez M. Li Z. Soladoye OP. Van-Hecke T. Health risks of food oxidation. In: Advances in Food and Nutrition Research. Vol 82. Elsevier. 2017: 45-81. https://doi.org/10.1016/bs.afnr.2016.12.005
16. Righi N. Boumerfeg S. Fernandes PAR. Deghima A. Baali F. Coelho E. Cardoso SM. Coimbra MA. Baghiani A. Thymus algeriensis Bioss & Reut: Relationship of phenolic compounds composition with in vitro/in vivo antioxidant and antibacterial activity. Food Research International. 2020; 136: 109500. https://doi.org/10.1016/j.foodres.2020.109500
17. Alqudah AA. Al Hawamdeh B. Ali D. Alfarrayeh I. Algataitat B. Al-Mobideen OK. Alhawatema M. Comparison of Antibacterial and Antioxidant Activities of Ethanolic Extracts of Four Plant Species Selected from South of Saudi Arabia. Pharmacognosy Journal. 2023; 15(4): 691-6. http://dx.doi.org/10.5530/pj.2023.15.138
18. Khleifat K. Alqaraleh M. Al-limoun M. Alfarrayeh I. Khatib R. Qaralleh H. Alsarayreh A. Al Qaisi Y. Abu Hajleh M. The ability of rhizopus stolonifer MR11 to biosynthesize silver nanoparticles in response to various culture media components and optimization of process parameters required at each stage of biosynthesis. Journal of Ecological Engineering. 2022; 23(8): 89-100. https://doi.org/10.12911/22998993/150673
19. Alfarrayeh I. Al-Nedawi H. Qaisi Y Al. Ahmad A. Qaralleh H. Laila A-O. Husein NF. Investigation of antibacterial and anti-biofilm potential of ethanol and dichloromethane extracts from Salvadora persica and Chamaemelum nobile: A comparative study with LC-MS characterization. Medicinal Plants-International Journal of Phytomedicines and Related Industries. 2023; 15(4): 763-75. http://dx.doi.org/10.5958/0975-6892.2023.00078.3
20. Mansour O. Salamma R. Abbas L. Screening of Antibacterial activity in vitro of Cyclamen hederifolium tubers extracts. Research Journal of Pharmacy and Technology. 2016; 9(11): 1837-9. http://dx.doi.org/10.5958/0974-360X.2016.00374.7
21. Bhavani R. Bhuvaneswari E. Rajeshkumar S. Antibacterial and Antioxidant activity of Ethanolic extract of Ceiba pentandra leaves and its Phytochemicals Analysis using GC-MS. Research Journal of Pharmacy and Technology. 2016; 9(11): 1922-6. http://dx.doi.org/10.5958/0974-360X.2016.00393.0
22. Parekh J. Chanda S. In vitro antibacterial activity of the crude methanol extract of Woodfordia fruticosa Kurz. Flower (Lythraceae). Brazilian Journal of Microbiology. 2007; 38(2): 204-7. https://doi.org/10.1590/S1517-83822007000200004
23. Kumar AS. Mazumder A. Vanitha J. Ganesh M. Venkateshwaran K. Saravanan VS. Sivakumar T. Antibacterial Activity of Methanolic Extract of Sesbania Grandiflora (Fabaceae). Research Journal of Pharmacy and Technology. 2008; 1(1): 59-60. https://www.indianjournals.com/ijor.aspx?target=ijor:rjpt&volume=1&issue=1&article=013
24. Bauer AW. Kirby WMM. Sherris JC. Turck M. Antibiotic susceptibility testing by a standardized single disk method. American journal of clinical pathology. 1966;45(4_ts):493-6. https://doi.org/10.1093/ajcp/45.4_ts.493
25. Munne SL. Parwate D V. Ingle VN. Preliminary Phytochemical Screening, Free radical Scavenging and Antimicrobial activities of Citrus auranticum fruit bio-mass. Research Journal of Pharmacy and Technology. 2009; 2(3): 607-8. https://www.indianjournals.com/ijor.aspx?target=ijor:rjpt&volume=2&issue=3&article=044
26. CLSI. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard—Ninth Edition. CLSI document M07-A9. Wayne, PA: Clinical and Laboratory Standards Institute, 2012. https://clsi.org/media/1928/m07ed11_sample.pdf
27. Punasiya R. Pillai S. In Vitro Antibacterial Activity of Leaf Extracts of Hibiscus Syriacus (L). Research Journal of Topical and Cosmetic Sciences. 2014; 5(2): 51-5. https://www.indianjournals.com/ijor.aspx?target=ijor:rjtcs&volume=5&issue=2&article=003
28. Kowalska-Krochmal B. Dudek-Wicher R. The minimum inhibitory concentration of antibiotics: Methods, interpretation, clinical relevance. Pathogens. 2021; 10(2): 165. https://doi.org/10.3390/pathogens10020165
29. Al Assi G. Al-Bashaereh A. Alsarayreh A. Al Qaisi Y. Al-Majali I. Khleifat K. Alqaraleh M. Qaralleh H. Al-Farrayeh I. Evaluation of Antibacterial, Antioxidant and Anti-inflammatory Properties of Methanol Extract of Varthemia iphionoides. Tropical Journal of Natural Product Research. 2023; 7(1): 2107–14. http://www.doi.org/10.26538/tjnpr/v7i1.4
30. Singleton VL. Rossi JA. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American journal of Enology and Viticulture. 1965; 16(3): 144-58. https://www.ajevonline.org/content/16/3/144.short
31. Gunalan G. Kumar MS. Sangeetha N. Preliminary Phytochemical Analysis and In Vitro Oxidant Scavenging Activity of Rosemary officinalis. Research Journal of Pharmacy and Technology. 2011; 4(10): 1588-90. https://www.indianjournals.com/ijor.aspx?target=ijor:rjpt&volume=4&issue=10&article=017
32. Tiwari P. Patel RK. Estimation of total phenolics and flavonoids and antioxidant potential of Ashwagandharishta prepared by traditional and modern methods. Asian Journal of Pharmaceutical Analysis. 2013; 3(4): 147-52. https://indianjournals.com/ijor.aspx?target=ijor:ajpa&volume=3&issue=4&article=009
33. Tepe B. Daferera D. Sokmen A. Sokmen M. Polissiou M. Antimicrobial and antioxidant activities of the essential oil and various extracts of Salvia tomentosa Miller (Lamiaceae). Food Chemistry. 2005; 90(3): 333-40. https://doi.org/10.1016/j.foodchem.2003.09.013
34. Balamurugan G. Arunkumar MP. Muthusamy P. Anbazhagan S. Preliminary Phytochemical Screening, Free radical Scavenging and Antimicrobial activities of Justicia tranquebariensis Linn. Research Journal of Pharmacy and Technology. 2008; 1(2): 116-8. https://www.indianjournals.com/ijor.aspx?target=ijor:rjpt&volume=1&issue=2&article=012
35. Benzie IFF. Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical Biochemistry. 1996; 239(1): 70-6. https://doi.org/10.1006/abio.1996.0292
36. Santos PAG. Figueiredo AC. Barroso JG. Pedro LG. Scheffer JJC. Composition of the essential oil of Hypericum foliosum Aiton from five Azorean islands. Flavour and fragrance journal. 1999; 14(5): 283-6. https://doi.org/10.1002/(SICI)1099-1026(199909/10)14:5%3C283::AID-FFJ826%3E3.0.CO;2-2
37. Avenirova EL. Effect of novoimanine on the cellular permeability indices of staphylococci. Antibiotiki. 1977; 22(7): 630-4. https://europepmc.org/article/med/142441
38. Dal Piaz F. Imparato S. Lepore L. Bader A. De Tommasi N. A fast and efficient LC–MS/MS method for detection, identification and quantitative analysis of bioactive sesterterpenes in Salvia dominica crude extracts. Journal of Pharmaceutical and Biomedical Analysis. 2010; 51(1): 70-7. https://doi.org/10.1016/j.jpba.2009.08.006
39. Cos P. Vlietinck AJ. Berghe D Vanden. Maes L. Anti-infective potential of natural products: how to develop a stronger in vitro ‘proof-of-concept.’ Journal of Ethnopharmacology. 2006; 106(3): 290-302. https://doi.org/10.1016/j.jep.2006.04.003
40. Breijyeh Z. Jubeh B. Karaman R. Resistance of Gram-negative bacteria to current antibacterial agents and approaches to resolve it. Molecules. 2020; 25(6): 1340. https://doi.org/10.3390/molecules25061340
41. Sipahi H. Korkmaz B. Avsar C. Fandakli S. Elmas E. Volatile profiles, antioxidant, and antimicrobial activities of essential oils and extracts of different parts from Sarcopoterium spinosum (L.) Spach growing wild in Sinop (Turkey). Journal of Essential Oil Bearing Plants. 2017; 20(3): 688-700. https://doi.org/10.1080/0972060X.2017.1342567
42. Yaghoubi MJ. Gh G. Satari R. Antimicrobial activity of Iranian propolis and its chemical composition. DARU Journal of Pharmaceutical Sciences. 2007; 15(1): 45-8. http://daru.tums.ac.ir/index.php/daru/article/view/303
43. Ng TB. Liu F. Wang ZT. Antioxidative activity of natural products from plants. Life Sciences. 2000; 66(8): 709-23. https://doi.org/10.1016/S0024-3205(99)00642-6
44. Çirak C. Radusiene J. Janulis V. Ivanauskas L. ÇAMAŞ N. Ayan AK. Phenolic constituents of Hypericum triquetrifolium Turra (Guttiferae) growing in Turkey: variation among populations and plant parts. Turkish Journal of Biology. 2011; 35(4): 449-56. https://doi.org/10.3906/biy-1002-36
45. Suleria HAR. Barrow CJ. Dunshea FR. Screening and characterization of phenolic compounds and their antioxidant capacity in different fruit peels. Foods. 2020; 9(9): 1206. https://doi.org/10.3390/foods9091206
46. Kiselova Y. Ivanova D. Chervenkov T. Gerova D. Galunska B. Yankova T. Correlation between the in vitro antioxidant activity and polyphenol content of aqueous extracts from Bulgarian herbs. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives. 2006; 20(11): 961-5. https://doi.org/10.1002/ptr.1985
47. Zheng W. Wang SY. Antioxidant activity and phenolic compounds in selected herbs. Journal of Agricultural and Food Chemistry. 2001; 49(11): 5165-70. https://pubs.acs.org/doi/abs/10.1021/jf010697n
48. Guemari F. Laouini SE. Rebiai A. Bouafia A. Phytochemical screening and Identification of Polyphenols, Evaluation of Antioxidant activity and study of Biological properties of extract Silybum marianum (L.). Asian Journal of Research in Chemistry. 2020; 13(3): 190-7. http://dx.doi.org/10.5958/0974-4150.2020.00037.1
49. Arnous A. Makris DP. Kefalas P. Correlation of pigment and flavanol content with antioxidant properties in selected aged regional wines from Greece. Journal of Food Composition and Analysis. 2002; 15(6): 655-65. https://doi.org/10.1006/jfca.2002.1070
50. Pulido R. Bravo L. Saura-Calixto F. Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. Journal of Agricultural and Food Chemistry. 2000; 48(8): 3396-402. https://doi.org/10.1021/jf9913458