Author(s):
Azis Saifudin, Dian Yuni Astuti, Wahyu Nur Hidayati, Yusdan Aulia Nisa, Maryati Maryati
Email(s):
azis.saifudin@ums.ac.id , dianyuni67@gmail.com , wahyunurhidayati21@gmail.com , iyusdanyulidan@gmail.com , maryati@ums.ac.id
DOI:
10.52711/0974-360X.2024.00344
Address:
Azis Saifudin, Dian Yuni Astuti, Wahyu Nur Hidayati, Yusdan Aulia Nisa, Maryati Maryati
Faculty of Pharmacy, Universitas Muhammadiyah Surakarta, Pabelan, KTS Solo, Jawa Tengah 57102, Indonesia
*Corresponding Author
Published In:
Volume - 17,
Issue - 5,
Year - 2024
ABSTRACT:
Current reports have revealed that Alpinia galanga rhizome is among the most promising medicinal plants for possible cancer treatments. Their active markers have been proposed as phenylpropanoid group derivatives. The geographical origins may result in the chemical constituent diversity that might affect A. galanga bioactivity. A rapid and economic HPLC-UV method has been developed to allow the analysis of four chemical markers, namely trans-p-coumaryl alcohol (1), p-coumaryl diacetate (2), [1’S]-1’-acetoxy chavicol (3), and trans-p-coumaryl diacetate (4). Separation was achieved on the C-18 column using a methanol-water solvent system without any modifiers. The samples were collected from twelve cultivation centers of A. galanga in Indonesia: Karangpandan, Karanganyar Solo, Wonogiri, Klaten, Selogiri, Boyolali, Jogja, Kudus, Singkawang, Banjarmasin, and Lampung. Their chemical profiles were examined based of HPLC-UV technique. The chromatography system was able to reveal all of the markers. Interestingly, all of the samples displayed significant T47D breast cancer cell inhibitory activity with apparent IC50 values of 27 to 65 µg/mL. The presence of 1 or 2 in a high concentration did not significantly contribute to the inhibitory effect, but the presence of 3 and 4 in a certain percentage might maintain the activity. Furthermore, on the basis of principal component analysis (PCA), A. galanga samples collected from different geographical origins could be featured. This efficient HPLC-based technique possesses a good prospect of being applied for industrial purposes.
Cite this article:
Azis Saifudin, Dian Yuni Astuti, Wahyu Nur Hidayati, Yusdan Aulia Nisa, Maryati Maryati. Analytical Method Development for Authentication of Alpinia galanga Rhizome Based on Phenylpropanoid Markers by RP-HPLC-UV. Research Journal of Pharmacy and Technology. 2024; 17(5):2185-2. doi: 10.52711/0974-360X.2024.00344
Cite(Electronic):
Azis Saifudin, Dian Yuni Astuti, Wahyu Nur Hidayati, Yusdan Aulia Nisa, Maryati Maryati. Analytical Method Development for Authentication of Alpinia galanga Rhizome Based on Phenylpropanoid Markers by RP-HPLC-UV. Research Journal of Pharmacy and Technology. 2024; 17(5):2185-2. doi: 10.52711/0974-360X.2024.00344 Available on: https://rjptonline.org/AbstractView.aspx?PID=2024-17-5-40
REFERENCES:
1. Pradubyat N. Giannoudis A. Elmetwali T. Mahalapbutr P. Palmieri C. Mitrpant C. Ketchart W. 1′-Acetoxychavicol Acetate from Alpinia galanga represses proliferation and invasion, and induces apoptosis via HER2-signaling in endocrine-resistant breast cancer cells. Planta Medica. 2022; 88(2): 163-178.https://doi.org/10.1055/a-1307-3997
2. Ramanunny AK. Wadhwa S. Gulati M. Vishwas S. Khursheed R. Paudel KR. Gupta S. Porwal O. Alshahrani SM. Jha NK. Chellappan DK. Prasher P. Gupta G. Adams J. Dua K. Tewari D. Singh SK. Journey of Alpinia galanga from kitchen spice to nutraceutical to folk medicine to nanomedicine. J Ethnopharmacol. 2022; 12(291): 115144. https://doi.org/10.1016/j.jep.2022.115144
3. Subramaniam B. ArshadNM. Malagobadan S.MisranM. Nyamathulla S. Mun KS. NagoorNH. Development and evaluation of 1′-acetoxychavicol acetate (ACA)-Loaded nanostructured lipid carriers for prostate cancer therapy. Pharmaceutics. 2021. 13(4): 439. https://doi.org/10.3390/pharmaceutics13040439
4. Baradwaj RG. RaoMV.Kumar TS. Novel purification of 1’S-1’-Acetoxychavicol acetate from Alpinia galanga and its cytotoxic plus antiproliferative activity in colorectal adenocarcinoma cell line SW480. Biomedicine and Pharmacotherapy. 2017. 91: 485-493. https://doi.org/10.1016/j.biopha.2017.04.114
5. Itokawa H. Morita H. SumitomoT. TotsukaN.Takeya K. Antitumour principles from Alpinia galanga. Planta Medica1987; 53(01): 32-33.https://doi.org/10.1055/s-2006-962611
6. ItoK. Nakazato T. Murakami A. Yamato K.Miyakawa Y.Yamada T. KizakiM. Induction of apoptosis in human myeloid leukemic cells by 1′-acetoxychavicol acetate through a mitochondrial-and Fas-mediated dual mechanism. Clinical Cancer Research. 2004; 10(6): 2120-2130.https://doi.org/10.1158/1078-0432.CCR-1142-03
7. SokSP. Arshad NM. Azmi MN. Awang K. Ozpolat B. Hasima Nagoor N. The apoptotic effect of 1’S-1’-Acetoxychavicol Acetate (ACA) enhanced by inhibition of non-canonical autophagy in human non-small cell lung cancer cells. PloS one. 2017; 12(2): e0171329.https://doi.org/10.1371/journal.pone.0171329
8. Suhendi A. Wikantyasning ER. Setyadi G. Wahyuni AS. Da'i M. Acetoxy Chavicol Acetate (ACA) concentration and cytotoxic activity of Alpinia galanga extract on HeLa, MCF7 and T47D cancer cell lines. Indonesian Journal of Cancer Chemoprevention2017; 8(2): 81-84. http://dx.doi.org/10.14499/indonesianjcanchemoprev8iss2pp81-84
9. Da'i M. Meilinasary KA. Suhendi A. Haryanti S. Selectivity index of Alpinia galanga extract and 1’-acetoxychavicol acetate on cancer cell lines. Indonesian Journal of Cancer Chemoprevention. 2019; 10(2): 95-100.http://dx.doi.org/10.14499/indonesianjcanchemoprev10iss2pp95-100
10. Phuah NH. Azmi MN.Awang K.Nagoor NH. Suppression of microRNA-629 enhances sensitivity of cervical cancer cells to 1′ S-1′-acetoxychavicol acetate via regulating RSU1. OncoTargets and Therapy. 2017; 10:1695-1705. https://doi.org/10.2147%2FOTT.S117492
11. DaiM. Fadhilah A. RahmawatiJ. Forentin A. Usia T. Maryati M. SaifudinA. T47D cell-inhibiting Indonesian medicinal plants and active constituents of Alpinia galanga rhizome. Pharmacognosy Magazine. 2018; 14(56): 359-363. https://dx.doi.org/10.4103/pm.pm_259_17
12. Singh JH. Alagarsamy V. Diwan PV. Kumar S S. Nisha JC.Reddy YN. Neuroprotective effect of Alpinia galanga (L.) fractions on Aβ (25–35) induced amnesia in mice. Journal of Ethnopharmacology. 2011; 138(1): 85-91. https://doi.org/10.1016/j.jep.2011.08.048
13. Das RJ. Duragkar NJ. Umekar MJ. Katolkar P. Evaluation of Anti-inflammatory Activity of Different Extracts of Alpinia galanga. Research Journal of Pharmacy and Technology. 2017; 10(10): 3301-3304.http://dx.doi.org/10.5958/0974-360X.2017.00585.6
14. IyerD. Sharma BK.Patil UK. Isolation of bioactive phytoconstituent from Alpinia galanga L. with anti-hyperlipidemic activity. Journal of Dietary Supplements. (2013); 10(4): 309-317. https://doi.org/10.3109/19390211.2013.830674
15. Godelmann R. Fang F.Humpfer E. Schütz B. Bansbach M. Schäfer H.Spraul M. Targeted and nontargeted wine analysis by 1H NMR spectroscopy combined with multivariate statistical analysis. Differentiation of important parameters: grape variety, geographical origin, year of vintage. Journal of Agricultural and Food Chemistry. 2013; 61(23): 5610-5619. https://doi.org/10.1021/jf400800d
16. Lee J. Jung Y. Shin JH. Kim HK. MoonBC. Ryu DH.HwangGS. Secondary metabolite profiling of Curcuma species grown at different locations using GC/TOF and UPLC/Q-TOF MS. Molecules. 2014; 19(7): 9535-9551. https://doi.org/10.3390/molecules19079535
17. Karabagias IK. Vlasiou M. Kontakos S. Drouza C. Kontominas MG. Keramidas AD. Geographical discrimination of pine and fir honeys using multivariate analyses of major and minor honey components identified by 1H NMR and HPLC along with physicochemical data. European Food Research and Technology. 2018; 244: 1249-1259. https://doi.org/10.1007/s00217-018-3040-5
18. Sri KV.Ravinderreddy S. Suresh K. Rapid RP-HPLC method development and validation for analysis of raltegravir in bulk and pharmaceutical dosage form. Asian Journal of Research in Chemistry. 2015; 8(5): 335-339. http://dx.doi.org/10.5958/0974-4150.2015.00055.3
19. Sri KV. Anusha M. Reddy SR. A rapid RP-HPLC method development and validation for the analysis of linagliptinin bulk and pharmaceutical dosage form. Asian Journal of Pharmaceutical Analysis. 2015; 5(1): 16-20. https://doi.org/10.5958/2231-5675.2015.00003.4
20. Elrefay H. Ismaiel OA. Hassan WS. Shalaby A. Determination of glibenclamide and metformin hydrochloride in active pharmaceutical ingredients and combined dosage form using a stability-indicating HPLC-UV method. Asian Journal of Research in Chemistry. 2013; 6(8): 716-721.
21. Khan H. Ali M. Ahuja A. Ali J. Validated HPLC-UV Method for simultaneous determination of some anti-inflammatory and analgesic drugs. Asian Journal of Pharmaceutical Analysis. 2016; 6(3):183-187.
22. Pathi PJ. Raju, N. A. The Estimation of Cefquinome Sulphate in Suspension Form by RP-HPLC. Asian Journal of Pharmaceutical Analysis. 2012; 2(2): 33-35.
23. Kumaraswamy G. Ravindra N. Jyothsna B. Development and validation of a reversed-phase HPLC method for simultaneous determination of Aspirin, Atenolol and Amlodipine in capsules dosage forms. Asian Journal of Pharmaceutical Analysis 2014; 4(3), 116-120: 10.5958/2231–5675
24. Gupta SK. Sachan N. Chandra P. Sharma AK. A facile RP-HPLC strategy for sensitive detection and stability study of dacarbazine in API and in pharmaceutical sosage dorm. Research Journal of Pharmacy and Technology. 2023; 16(4): 1674-1678.https://doi.org/10.52711/0974-360X.2023.00274
25. Bytyqi M. Shabani D. Bozalija A. In vitro pharmaceutical quality evaluation of different ibuprofen tablet brands available on the Republic of Kosovo market. Research Journal of Pharmacy and Technology. 2022; 15(8): 3725-3730.http://dx.doi.org/10.52711/0974-360X.2022.00624
26. Ningrum VD. Wibowo A. Fuaida I. Ikawati Z. Sadewa AH. Ikhsan MR. Validation of an HPLC-UV method for the determination of metformin hydrochloride in spiked-human plasma for the application of therapeutic drug monitoring. Research Journal of Pharmacy and Technology. 2018; 11(6): 2197-2202. http://dx.doi.org/10.5958/0974-360X.2018.00406.7
27. Akasha R. Allaf AW. Al-Mardini MA. Characterization of the global metabolic profile of Canagliflozin in Rat plasma, urine and feces based on HPLCUV-MS Analysis. Research Journal of Pharmacy and Technology. 2020; 13(1): 399-403.http://dx.doi.org/10.5958/0974-360X.2020.00078.5
28. Singh A. Upmanyu N. Development and validation of analytical HPLC-UV method for simultaneous estimation of losartan and its active Metabolite EXP-31742021. Asian Journal of Research in Chemistry. 2021;14(4): 275-281http://dx.doi.org/10.52711/0974-4150.2021.00047
29. Govindarajan R. Tejas V. Pushpangadan P. High-performance liquid chromatography (HPLC) as a tool for standardization of complex herbal drugs. Journal of AOAC International. 2019; 102(4): 986-992.https://doi.org/10.5740/jaoacint.18-0378
30. Seo CS. Shin HK. Quality assessment of traditional herbal formula, Hyeonggaeyeongyo-tang through simultaneous determination of twenty marker components by HPLC–PDA and LC–MS/MS. Saudi Pharmaceutical Journal. 2020; 28(4): 427-https://doi.org/10.1016/j.jsps.2020.02.003
31. Abid A. Dekmouche M. Bechki L. Bireche K. Belkhalfa H. Messaoudi A. Belfar ML. Bioactive composition analysis using HPLC-UV profile and evaluation of antioxidant activities of different extracts from aerial parts of Atractylisaristata batt. Research Journal of Pharmacy and Technology. 2022; 15(8): 3370-3376. https://doi.org/10.1016/j.jsps.2020.02.003
32. Liu Z. Sang S. Hartman TG. Ho CT.Rosen RT. Determination of diarylheptanoids from Alpinia officinarum (lesser galangal) by HPLC with photodiode array and electrochemical detection. Phytochemical Analysis: An International Journal of Plant Chemical and Biochemical Techniques2005; 16(4): 252-256.https://doi.org/10.1002/pca.827
33. Fang L, Zhang H, Zhou J, Geng Y, Wang X. Rapid screening and preparative isolation of antioxidants from Alpinia officinarumhance using HSCCC coupled with DPPH-HPLC assay and evaluation of Their antioxidant activities. Journal of Analytical Methods Chemistry. 2018; 31 (2018): 3158293. doi: 10.1155/2018
34. Luo J, Rui W, Jiang M, Tian Q, Ji X, Feng Y. Separation and identification of diarylheptanoids in supercritical fluid extract of Alpinia officinarum by UPLC-MS-MS. Journal of Chromatographic Science2018; 48(10): 795–801. https://doi.org/10.1155/2018/3158293.
35. Noro T. Sekiya T. Katoh M. Oda Y. Miyase T.Kuroyanagi M. Inhibitors of xanthine oxidase from Alpinia galanga, Chemical Pharmarceutical Bulletin. 1998; 36: 244-248.https://doi.org/10.1248/cpb.36.244
36. Chourasiya SS, Sreedhar E, Babu KS, Shankaraiah N, Nayak VL, Ramakrishna S, Sravani S, Basaveswara Rao MV. Isolation, synthesis and biological evaluation of phenylpropanoids from the rhizomes of Alpania galanga. Natural Product Communications. 2013; 8(12):1741-6.https://doi.org/10.1177/1934578X1300801222
37. van Meerloo J, Kasper, GJL, Cloos J Cell Sensitivity Assays: The MTT Assay. In: Cree, I. (eds) Cancer Cell Culture. Methods in Molecular Biology. 2011; vol 731. Humana Press. https://doi.org/10.1007/978-1-61779-080-5_20
38. R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. 2013. http://www.R-project.org/
39. Abdelgawad MA, Abdelaleem EA, Gamal M, Abourehab MAS, Abdelhamid NS. A new green approach for the reduction of consumed solvents and simultaneous quality control analysis of several pharmaceuticals using a fast and economic RP-HPLC method; a case study for a mixture of piracetam, ketoprofen and omeprazole drugs.The Royal Society of Chemistry RSC Advances. 2022; 12(25): 16301-16309. doi: 10.1039/d2ra02395d
40. FDA (Food and Drug Administration - Office of Regulatory Affairs). Methods, Method Verification and Validation. 2020. Accessed March 4, 2021. https://wwwfdagov/media/73920/download
41. ICH (International Conference of Harmonization). Validation of Analytical Procedures: Text and Methodology Q2 (R1). 2005. Accessed August 25, 2021. https://databaseichorg/sites/default/files/Q2%28R1%29%20Guideline.pd
42. Upadhye AS.Rajopadhye A. DiasL. Development and validation of HPTLC fingerprints of three species of Alpinia with biomarker Galangin. BMC Complementary and Alternative Medicine. 2018; 18(1): 1-5. https://doi.org/10.1186/s12906-017-2033-4
43. Lee JE, Lee BJ, Chung JO, Kim HN, Kim EH, Jung S, Lee H, Lee SJ, Hong YS. Metabolomic unveiling of a diverse range of green tea (Camellia sinensis) metabolites dependent on geography. Food Chemistry 2014; 174: 452-459. doi: 10.1016/j.foodchem.2014.11.086.
44. Olivier D, van der Kooy F, Gerber M. Geographical and seasonal phytochemical variation of Artemisia afra Jacq. ex Willd. Phytochemical Analysis. 2023; 34(2):175-185. https://doi.org/10.1002/pca.3191
45. Yousefzadeh S. Abedi R.Mokhtassi-Bidgoli A. Which environmental factors are more important for geographic distributions of Thymus species and their physio-morphological and phytochemical variations?. Arabian Journal of Geosciences. 2021; 14(18), 1864. https://doi.org/10.1007/s12517-021-08253-2
46. Khattab AR. Rasheed DM. El-Haddad AE. Porzel A. Wessjohann LA. FaragMA. Assessing phytoequivalency of four Zingiberaceae spices (galangals, turmeric and ginger) using a biochemometric approach: A case study. Industrial Crops and Products. 2022; 188: 115722. https://doi.org/10.1016/j.indcrop.2022.115722