Author(s): Ganesh Choudhari, Vishnu Choudhari, Anil Pawar, Chandrakant More

Email(s): choudhariganesh@gmail.com

DOI: 10.52711/0974-360X.2024.00341   

Address: Ganesh Choudhari1*, Vishnu Choudhari1, Anil Pawar1, Chandrakant More2
1School of Health Sciences and Technology, Dr. Vishwanath Karad MIT World Peace University, MIT Campus, Kothrud, Pune - 411038, Maharashtra, India.
2Shri Swami Samarth Ayurvedic Pharmaceuticals, Trimbakeshwar, Dist. Nashik - 422212, Maharashtra, India.
*Corresponding Author

Published In:   Volume - 17,      Issue - 5,     Year - 2024


ABSTRACT:
The study was undertaken to evaluate single herb formulation (SHF) as Saptarangi tablet (ST) and polyherbal formulations (PHF) as Saptarangi plus Kadha (SK) for diabetes and hyperlipidemia. The main objective of proposed study was to evaluate the anti-diabetic and anti-hyperlipidemic activities of ST and SK in streptozotocin (STZ)-induced diabetic rats, as well as their interactions with metformin (MET), in order to prove complementary and alternative medicine (CAM) for diabetes treatments. The single intraperitoneal injection (i.p.) of STZ at the dose of 45mg/kg was given to induce diabetes in Wistar albino rats. At dosages of 45 mg/kg and 1.35ml/kg, ST and SK were evaluated for antidiabetic and antihyperlipidemic action. It was calculated using biochemical alterations in urine, serum, liver, kidney and pancreatic tissue homogenate. The liver, kidney and pancreas tissues were examined for histological changes. MET at the dose of 100 mg/kg was administered as a reference standard. Hyperglycemia, increased serum HbA1c(glycosylated hemoglobin), increased oxidative stress, increased urine volume and frequency, increased serum lipid profile(mg/dl), decreased liver glycogen content (%), and minimal to normal histological alterations in the liver, kidney, and pancreas were all observed following STZ administration. The increased serum glucose level(mg/dl) and urine volume (ml/24hrs) were significantly lowered by ST and SK. The serum lipid profile and HbA1c levels were significantly improved by ST and SK. The amount of glycogen in the liver also increased significantly. The histological changes in liver, kidney and pancreatic tissue were recovered as close to normal due to ST and SK treatment. Without any herb-drug interactions (HDI), ST and SK showed significant antidiabetic and hypolipidemic activities. ST has significant anti-diabetic and anti-hyperlipidemic activities. These activities were improved much more in the SK group, and there was no HDI for ST/SK with MET, confirming that ST and SK have CAM potential. Furthermore, the SK+MET combination has proved to have the most promising anti-diabetic and anti-hyperlipidemic effects.


Cite this article:
Ganesh Choudhari, Vishnu Choudhari, Anil Pawar, Chandrakant More. Evaluation of Antidiabetic, Antihyperlipidemic Potential and Herb-Drug Interaction of Saptarangi plus Kadha and Saptarangi Tablet in Streptozotocin Induced Diabetic Rats. Research Journal of Pharmacy and Technology. 2024; 17(5):2164-1. doi: 10.52711/0974-360X.2024.00341

Cite(Electronic):
Ganesh Choudhari, Vishnu Choudhari, Anil Pawar, Chandrakant More. Evaluation of Antidiabetic, Antihyperlipidemic Potential and Herb-Drug Interaction of Saptarangi plus Kadha and Saptarangi Tablet in Streptozotocin Induced Diabetic Rats. Research Journal of Pharmacy and Technology. 2024; 17(5):2164-1. doi: 10.52711/0974-360X.2024.00341   Available on: https://rjptonline.org/AbstractView.aspx?PID=2024-17-5-37


REFERENCES:
1.    Pouya S. Inga P. Paraskevi S. Belma M. Suvi K. Nigel U. et. al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas. 9th edition, Diabetes Research and Clinical Practice. 2019, 157; 107843, 1-10. 10.1016/j.diabres.2019.107843
2.    Arumugam G. Manjula P. Paari N. A review: Anti diabetic medicinal plants used for diabetes mellitus. Journal of Acute Disease. 2013; 196-200. https://doi.org/10.1016/S2221-6189(13)60126-2
3.    Maha AA. Ahmed IY. Sakina MY. Evaluation of antidiabetic activity of plants used in Western Sudan. Asian Pac J Trop Biomed. 2015; 5(5): 395-402. https://doi.org/10.1016/S2221-1691(15)30375-0
4.    Hira C. Manisha P.  Chua KH. Cheah SM. Jessmie KJ. Lillian K. et. al. An update on natural compounds in the remedy of diabetes mellitus: A systematic review. Journal of Traditional and Complementary Medicine. 2018; 8: 361-376. 10.1016/j.jtcme.2017.08.012
5.    Pandeya SN. Kumar R. Kumar A. Pathak AK. Antidiabetics Review on Natural Products. Research J. Pharm. and Tech. 2010; 3(2): 300-318.
6.    Punasiya R. Joshi A. Patidar K. Antidiabetic Effect of an Aqueous Extract of Pomegranate (Punicagranatum L.) Peels in Normal and Alloxan Diabetic Rats. Research J. Pharm. and Tech. 2010; 3(1): 272-274.
7.    SrikanthJeyabalan, MuralidharanPalayan. Antihyperlipidemic activity of Sapindusemarginatus in Triton WR-1339 induced albino rats. Research J. Pharm. and Tech. 2009; 2 (2): 319-323.
8.    Adhikary S. Kandar CC. Haldar PK. Basu A. Choudhury S. Preclinical Evaluation of Antidiabetic Effect of Pedilanthustithymaloides Extracts in Streptozotocin (STZ) Induced Diabetic Rats. Research J. Pharm. and Tech. 2010; 3(4): 1132-1133.
9.    Chauhan HV. In-Vivo Antidiabetic, Lipid Lowering and Antioxidant Activities of MethanolicExtaract of Lawsoniainermis Leaves. Research J. Pharm. and Tech. 2011; 4(5):764-767.
10.    Karandikar A. Prasath GS. Subramanian S. Evaluation of Antidiabetic and Antioxidant Activity of Praecitrullusfistulosus Fruits in STZ Induced Diabetic Rats. Research J. Pharm. and Tech. 2014; 7(2):196-203.
11.    Sohara PN. Antidiabetic and Antio.xidant Properties of Spirulina- A Review. Research J. Pharm. and Tech 2016; 9(11): 2034-2036.10.5958/0974-360X.2016.00415.7
12.    Kumudhaveni B. Radha R. Anti-diabetic potential of a traditional Polyherbal Formulation – A Review. Research J. Pharm. and Tech. 2017; 10(6): 1865-1869. 10.5958/0974-360X.2017.00327.4
13.    Patel BD. Kori ML. Antidiabetic Effect of Ammaniabaccifera Linn leaf on Streptozotocin Induced Diabetes in Male Albino Wistar Rats. Research J. Pharm. and Tech. 2018; 11(11): 4773-4780. 10.5958/0974-360X.2018.00869.7  
14.    RoopamDevaliya. MrunalShirsat. A Review on Indigenous Medicinal Plants for Diabetes Mellitus. Research J. Pharm. and Tech. 2017; 10(8): 2828-2836. 10.5958/0974-360X.2017.00499.1
15.    Singh RG. Rathore SS. Kumar R. Usha AA. Dubey GP. Nephroprotective role of Salacia chinensis in diabetic CKD patients: a pilot study, Indian J Med Sci. 2010; 64(8):378-84.10.4103/0019-5359.100341
16.    Fabio C. Ana MSP. Herbal medicines: old and new concepts, truths and misunderstandings. Brazilian Journal of Pharmacognosy. 2013; 23(2): 379-385. https://doi.org/10.1590/S0102-695X2013005000018
17.    Choudhari VP. Gore KP. Pawar AT. Antidiabetic, antihyperlipidemic activities and herb - drug interaction of a polyherbal formulation in streptozotocin induced diabetic rats. Journal of Ayurveda and Integrative Medicine. 2017; 8: 218-225. 10.1016/j.jaim.2016.11.002
18.    Deepak KGK. Rathna GP. Kavi KPB. Surekha CH. Salacia as an ayurvedic medicine with multiple targets in diabetes and obesity, Annals of Phytomedicine. 2015; 4(1): 46-53.
19.    Ramakrishna D. Shashank AT. Shinomol GK. Kiran.S. Ravishankar GA. Salacia sps.: A Source of Herbal Drug for Several Human Diseases and Disorders. International Journal of Current Pharmaceutical Review and Research.  2016; 7(3): 122-133.
20.    Reddy NM. Reddy NR. Tinospora cordifolia Chemical Constituents and Medicinal Properties: A Review. Sch. Acad. J. Pharm. 2015; 4(8): 364-369.
21.    AzarHosseini. HosseinHosseinzadeh. Antidotal or protective effects of Curcuma longa (turmeric) and its active ingredient, curcumin, against natural and chemical toxicities: A review, Biomedicine and Pharmacotherapy. 2018; 99: 411–421. 10.1016/j.biopha.2018.01.072
22.    Ghosh MN. Fundamental of experimental pharmacology. 2nd ed. Calcutta: Hilton and Company; 1984. p. 192. NO DoI
23.    Juvekar AR. Mestry SN. Dhodi JB. Kumbhar SB. Attenuation of diabetic nephropathy in streptozotocin-induced diabetic rats by Punicagranatum Linn. leaves extract, Journal of Traditional and Complementary Medicine. 2017; 7: 273-280. 10.1016/j.jtcme.2016.06.008
24.    Van der Vies J. Two methods for the determination of glycogen in liver. Bio-chem J. 1954; 57:410. 10.1042/bj0570410
25.    Choudhari G. Choudhari V. Baheti V. Mantri M. Matapurkar S. More M. Synergistic Antioxidant activity of a Polyherbal Preparation. Research J. Pharm. and Tech. 2020; 13(3); 1193-1197. 10.5958/0974-360X.2020.00220.6
26.    ChangrunGuo. Can Li. Yue Yu. Wei Chen. Teng Ma. Zhangjin Zhou.  Antihyperglycemic and antihyperlipidemic activities of protodioscin in a high-fat diet and streptozotocin-induced diabetic rats, RSC Advance. 2016; 6: 88640–88646. https://doi.org/10.1039/C6RA18448K
27.    Akbarzadeh A. Norouzian D. Mehrabi MR. Jamshidi SH. Farhangi A. Allah Verdi A.  Induction of diabetes by streptozotocin in rats. Indian J Clin Biochem. 2007; 22: 60-64. 10.1007/BF02913315
28.    Bolaffi JL. Nagamastu S. Harris J. Grodsky GM. Protection by thymidine, an inhibitor of polyadenosinediphosphateribosylation of streptozotocin inhibition of insulin secretion. Endocrinology 1987; 20: 2117-2122. 10.1210/endo-120-5-2117
29.    West E. Simon OR. Morrison EY. Streptozotocin alters pancreatic beta cells responsiveness to glucose within six hours of injection in rats. West Indian Med J. 1996;45: 60-62.
30.    Szkudelski T. The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol Res. 2001; 50:537-546.
31.    Lenzen S. Oxidative stress: the vulnerable beta-cell. BiochemSoc Trans. 2008; 36:343-347. 10.1042/BST0360343
32.    Kumar S. Kumar V. Prakash OM. Antidiabetic and hypolipidemic activities of Kigeliapinnata flowers extract in streptozotocin induced diabetic rats. Asian Pac J Trop Biomed. 2012; 2:543-546. 10.1016/S2221-1691(12)60093-8
33.    Castaneda C. Muscle wasting and protein metabolism. J Anim Sci. 2002; 80: E98-105. 10.2527/animalsci2002.80E-Suppl_2E98x
34.    Gillespie KM. Type 1 diabetes: pathogenesis and prevention. CMAJ. 2006; 2: 165-170. 10.1503/cmaj.060244
35.    Onwuli DO. Brown H. Ozoani HA. Antihyperglycemic effect of Tetracarpidiumconophorum nuts in alloxan-induced diabetic female rats. ISRN Endocrinol. 2014: 124974. http://dx.doi.org/10.1155/2014/124974.
36.    Eddouks M. Jouad H. Maghrani M. Lemhadri A. Burcelin A. Inhibition of endogenous glucose production accounts for hypoglycemic effect of Spergulariapurpurea in streptozotocin mice. Phytomedicine. 2003; 10: 594-599. https://doi.org/10.1078/094471103322331890
37.    Pari L. Satheesh MA. Antidiabetic activity of Boerhaaviadiffusa L on hepatic key enzymes in experimental diabetes. J Ethnopharmacol. 2004; 91: 109-113. 10.1016/j.jep.2003.12.013
38.    Kameswararao B. Kesavulu MM. Apparao CH. Evaluation of antidiabetic effect of Momordicacymbalaria fruit in alloxan-induced diabetic rats. Fitorapia. 2003; 74:7-13. 10.1016/s0367-326x(02)00297-6
39.    Tembhurne SV. Sakarkar DM. Protective effect of Murrayakoenigii (L) leaves extract in streptozotocin induced diabetics rats involving possible antioxidant mechanism. J Med Plant Res. 2010; 4:2418-23. https://doi.org/10.5897/JMPR10.349
40.    Calisti L. Tognetti S. Measure of glycosylated hemoglobin. Acta Biomed. 2005; 76:59-62.
41.    Prabhu D. Nappinnai M. Ponnudurai K. Thiruganasambantham A. Srinivasan S. Ramvikas M. Effects of Turneraumlifolia (Linn.) on blood glucose level of normal and alloxan-induced diabetic rats. Iran J Pharmacol Ther. 2009; 8: 77-81.
42.    Okokon JE. Nwaper PA. Okokon PJ. Umoh EE. Udobang JA. Antidiabetic and hypolipidemic activities of ethanolic root extract of Croton zambesicus on alloxan-induced diabetic rats. Asian J Pharm Biol Res. 2011; 1:493-499.
43.    Howard BV. Robbins DC. Sievers ML. Lee ET. Rhoades D. Devereux RB. et al. LDL cholesterol as a strong predictor of coronary heart disease in diabetic individuals with insulin resistance and low LDL: the Strong Heart Study. Arterioscler Thromb Vasc Biol. 2000; 20:830-835. 10.1161/01.atv.20.3.830
44.    Chattopadhyay RR. Bandyopadhyay M. Effect of Azadirachtaindica leaf extract on serum lipid profile changes in normal and streptozotocin induced diabetic rats. Afr J Biomed Res. 2005; 8:101-104.
45.    Descorbeth M. Anand Srivastava MB. Role of oxidative stress in high glucose and diabetes induced increased expression of Gq/11 alpha proteins and associated signaling in vascular smooth muscle cells. Free Radic Biol Med. 2010; 49:1395-1405. 10.1016/j.freeradbiomed.2010.07.023
46.    Chang YC. Chuang LM. The role of oxidative stress in the pathogenesis of type 2 diabetes: from molecular mechanism to clinical implication. Am J Transl Res. 2010; 2:316-331
47.    Matkovics B. Kotorman M. Varga IS. Hai DQ. Varga C. Oxidative stress in experimental diabetes induced by streptozotocin. Acta Physiol Hung. 1997; 85: 29-38.
48.    Kavalali G. Tuncel H. Goksel S. Hatemi HH. Hypoglycemic activity of Urticapilulifera in streptozotocin-diabetic rats. J Ethnopharmacol. 2003; 84:241-245. 10.1016/s0378-8741(02)00315-x
49.    Lenzen S. The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetologia 2008; 51:216-226. 10.1007/s00125-007-0886-7
50.    Prakash R. Dhivya R. Priyadarshini M. Ramya N. Karthick K. Antidiabetic, Antihyperlipidemic, Antioxidant Property of Cordiaobliqua on Streptozotocin Induced Diabetic Rats. J Young Pharm. 2017; 9(3):321-326. 10.5530/jyp.2017.9.64
51.    Dash AK. Mishra J. Dash DK. Antidiabetic along with antihyperlipidemic and antioxidant activity of aqueous extract of Platycladusorientalis in streptozotocin-induced diabetic rats. Current Medicine Research and Practice. 2014; 4: 255-262. 10.1016/j.cmrp.2014.11.012
52.    Rajasekaran A. Ramachandran S. Manisenthilkumar KT. Investigation of hypoglycemic, hypolipidemic and antioxidant activities of aqueous extract of Terminaliapaniculata bark in diabetic rats. Asian Pac J Trop Biomed. 2012; 2(4): 262-268. 10.1016/S2221-1691(12)60020-3
53.    Chaimumaom N. Chomko S. Talubmook C. Toxicology and Oral Glucose Tolerance Test (OGTT) of Thai Medicinal Plant Used for Diabetes control, Phyllanthusacidus L. (Euphorbiaceae).  Pharmacogn J. 2017; 9(1): 58-61. 10.5530/pj.2017.1.11
54.    Tadesse BT. Ariaya H. Yalemtsehay M. Mekuria T. Antidiabetic activity and phytochemical screening of extracts of the leaves of AjugaremotaBenth on alloxan-induced diabetic mice. BMC Complementary and Alternative Medicine. 2017; 17: 243: 2-9. 10.1186/s12906-017-1757-5

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags


Not Available