Author(s): Sumit Kumar, Pooja, Dinesh Kumar, Sachin Gulia, Rajni, Megha Thakur

Email(s): drsumitkumar@cuh.ac.in

DOI: 10.52711/0974-360X.2024.00303   

Address: Sumit Kumar1*, Pooja2, Dinesh Kumar3, Sachin Gulia4, Rajni5, Megha Thakur6
1Assistant Professor, Department of Pharmaceutical Sciences, Central University of Haryana, Jant-Pali, Mahendergarh, (Haryana), India – 123031.
2Research Scholar, Department of Pharmaceutical Sciences, Central University of Haryana, Jant-Pali, Mahendergarh, (Haryana), India – 123031.
3Assistant Professor, Atam Institute of Pharmacy, Om Sterling Global University, Hisar Haryana.
4School of Pharmacy, Sharda University, Greater Noida, Uttar Pradesh 201306, India.
5Assistant Professor, Starex University, Gurugram, Haryana.
6Megha Thakur - School of Pharmacy, Sharda University, Greater Noida, Uttar Pradesh 201306, India.
*Corresponding Author

Published In:   Volume - 17,      Issue - 4,     Year - 2024


ABSTRACT:
Background: Traumatic brain injury (TBI) affects a huge proportion of population worldwide. TBI is the most common epigenetic health risk for neurological illness later in life. Different post-injury mechanisms may contribute to neurodegeneration. Thus, it is associated with a greater risk of neurodegenerative diseases for instance Parkinson’s disease (PD), depression, epilepsy, amyotrophic lateral sclerosis (ALS), Alzheimer’s disease (AD) and chronic traumatic encephalopathy (CTE). Objective: The present study encapsulates the neurodegenerative effects trigged by TBI. Therefore, understanding of such triggers may be helpful in prediction, early diagnosis or the management of neurodegenerative diseases in patients who had TBI. Further, understanding of TBI-induced neuronal damage may provide better knowledge for drug development, disease management, and check of induction and progression of neurodegenerative diseases. Conclusion: Several approaches show a strong correlation between TBI secondary injury and various neurodegenerative diseases involving oxidative stress and numerous neuroinflammationdiseases. It appears that oxidative stress plays a crucial role in both TBI and neurodegeneration by causing neuroinflammation and glutamatergicexcitotoxicity.


Cite this article:
Sumit Kumar, Pooja, Dinesh Kumar, Sachin Gulia, Rajni, Megha Thakur. Traumatic Brain Injury: Role in Induction and Progression of Neurodegenerative Disorders. Research Journal of Pharmacy and Technology.2024; 17(4):1909-5. doi: 10.52711/0974-360X.2024.00303

Cite(Electronic):
Sumit Kumar, Pooja, Dinesh Kumar, Sachin Gulia, Rajni, Megha Thakur. Traumatic Brain Injury: Role in Induction and Progression of Neurodegenerative Disorders. Research Journal of Pharmacy and Technology.2024; 17(4):1909-5. doi: 10.52711/0974-360X.2024.00303   Available on: https://rjptonline.org/AbstractView.aspx?PID=2024-17-4-77


REFERENCES:
1.    Ray SK, Dixon CE, Banik NL. Molecular mechanisms in the pathogenesis of traumatic brain injury. Histol Histopathol. 2002; 17(4): 1137-1152. doi:10.14670/HH-17.1137
2.    Dewan MC, Rattani A, Gupta S, et al. Estimating the global incidence of traumatic brain injury. J Neurosurg. 2018; 130(4): 1080-1097. doi:10.3171/2017.10.JNS17352
3.    Faul M, Xu L, Wald MM, Coronado V, Dellinger AM. Traumatic brain injury in the United States: national estimates of prevalence and incidence, 2002-2006. Inj Prev. 2010; 16(Supplement 1): A268-A268. doi:10.1136/IP.2010.029215.951
4.    Maas AIR, Menon DK, David Adelson PD, et al. Traumatic brain injury: integrated approaches to improve prevention, clinical care, and research. Lancet Neurol. 2017; 16(12): 987-1048. doi:10.1016/S1474-4422(17)30371-X
5.    Centers for Disease Control and Prevention.
6.    Tagliaferri F, Compagnone C, Korsic M, Servadei F, Kraus J. A systematic review of brain injury epidemiology in Europe. Acta Neurochir. 2005; 148(3): 255-268. doi:10.1007/S00701-005-0651-Y
7.    Mohanty A, Budhwani N, Ghosh B, Tarafdar M, Chakravarty S. Lead content in new decorative paints in India. Environ Dev Sustain. 2013;15(6):1653-1661. doi:10.1007/S10668-013-9455-Z
8.    Roozenbeek B, Maas AIR, Menon DK. Changing patterns in the epidemiology of traumatic brain injury. Nat Rev Neurol. 2013; 9(4): 231-236. doi:10.1038/NRNEUROL.2013.22
9.    Albert-Weissenberger C, Sirén AL. Experimental traumatic brain injury. Exp Transl Stroke Med. 2010; 2(1). doi:10.1186/2040-7378-2-16
10.    Prins M, Greco T, Alexander D, Giza CC. The pathophysiology of traumatic brain injury at a glance. DMM Dis Model Mech. 2013; 6(6): 1307-1315. doi:10.1242/DMM.011585/-/DC1
11.    Bazarian JJ, Cernak I, Noble-Haeusslein L, Potolicchio S, Temkin N. Long-term neurologic outcomes after traumatic brain injury. J Head Trauma Rehabil. 2009; 24(6): 439-451. doi:10.1097/HTR.0B013E3181C15600
12.    Katsumoto A, Takeuchi H, Tanaka F. Tau Pathology in Chronic Traumatic Encephalopathy and Alzheimer’s Disease: Similarities and Differences. Front Neurol. 2019;10. doi:10.3389/FNEUR.2019.00980
13.    Abisambra JF, Scheff S. Brain injury in the context of tauopathies. J Alzheimer’s Dis. 2014; 40(3): 495-518. doi:10.3233/JAD-131019
14.    Washington PM, Morffy N, Parsadanian M, Zapple DN, Burns MP. Experimental traumatic brain injury induces rapid aggregation and oligomerization of amyloid-beta in an Alzheimer’s disease mouse model. J Neurotrauma. 2014; 31(1): 125-134. doi:10.1089/NEU.2013.3017
15.    Li Q, Wang P, Huang C, et al. N-Acetyl Serotonin Protects Neural Progenitor Cells Against Oxidative Stress-Induced Apoptosis and Improves Neurogenesis in Adult Mouse Hippocampus Following Traumatic Brain Injury. J Mol Neurosci. 2019; 67(4): 574-588. doi:10.1007/S12031-019-01263-6
16.    Salehi A, Zhang JH, Obenaus A. Response of the cerebral vasculature following traumatic brain injury. J Cereb Blood Flow Metab. 2017;37(7):2320-2339. doi:10.1177/0271678X17701460
17.    Fossati S, Ghiso J, Rostagno A. Insights into caspase-mediated apoptotic pathways induced by amyloid-β in cerebral microvascular endothelial cells. Neurodegener Dis. 2012; 10(1-4): 324-328. doi:10.1159/000332821
18.    Fossati S, Todd K, Sotolongo K, Ghiso J, Rostagno A. Differential contribution of isoaspartate post-translational modifications to the fibrillization and toxic properties of amyloid β and the Asn23 Iowa mutation. Biochem J. 2013; 456(3): 347. doi:10.1042/BJ20130652
19.    Blair LJ, Frauen HD, Zhang B, et al. Tau depletion prevents progressive blood-brain barrier damage in a mouse model of tauopathy. Acta Neuropathol Commun. 2015; 3: 8. doi:10.1186/S40478-015-0186-2
20.    Merlini M, Wanner D, Nitsch RM. Tau pathology-dependent remodelling of cerebral arteries precedes Alzheimer’s disease-related microvascular cerebral amyloid angiopathy. Acta Neuropathol. 2016; 131(5): 737-752. doi:10.1007/S00401-016-1560-2
21.    Xing C, Hayakawa K, Lok J, Arai K, Lo EH. Injury and repair in the neurovascular unit. Neurol Res. 2012; 34(4): 325-330. doi:10.1179/1743132812Y.0000000019
22.    Iadecola C. The Neurovascular Unit Coming of Age: A Journey through Neurovascular Coupling in Health and Disease. Neuron. 2017; 96(1): 17-42. doi:10.1016/J.NEURON.2017.07.030
23.    Gupta A, Iadecola C. Impaired Aβ clearance: a potential link between atherosclerosis and Alzheimer’s disease. Front Aging Neurosci. 2015; 7(May). doi:10.3389/FNAGI.2015.00115
24.    Hawthorne G, Gruen RL, Kaye AH. Traumatic brain injury and long-term quality of life: Findings from an Australian study. J Neurotrauma. 2009; 26(10): 1623-1633. doi:10.1089/NEU.2008.0735
25.    Bendlin BB, Ries ML, Lazar M, et al. Longitudinal changes in patients with traumatic brain injury assessed with diffusion-tensor and volumetric imaging. Neuroimage. 2008; 42(2): 503-514. doi:10.1016/J.NEUROIMAGE.2008.04.254
26.    Hudak A, Warner M, Marquez de la Plata C, Moore C, Harper C, Diaz-Arrastia R. Brain morphometry changes and depressive symptoms after traumatic brain injury. Psychiatry Res - Neuroimaging. 2011; 191(3): 160-165. doi:10.1016/J.PSCYCHRESNS.2010.10.003
27.    Maller JJ, Thomson RHS, Lewis PM, Rose SE, Pannek K, Fitzgerald PB. Traumatic brain injury, major depression, and diffusion tensor imaging: making connections. Brain Res Rev. 2010; 64(1): 213-240. doi:10.1016/J.BRAINRESREV.2010.04.003
28.    Jorge RE, Robinson RG, Moser D, Tateno A, Crespo-Facorro B, Arndt S. Major Depression Following Traumatic Brain Injury. Arch Gen Psychiatry. 2004; 61(1): 42-50. doi:10.1001/ARCHPSYC.61.1.42
29.    Uryu K, Chen XH, Martinez D, et al. Multiple proteins implicated in neurodegenerative diseases accumulate in axons after brain trauma in humans. Exp Neurol. 2007; 208(2): 185-192. doi:10.1016/J.EXPNEUROL.2007.06.018
30.    Maier B, Schwerdtfeger K, Mautes A, et al. Differential release of interleukines 6, 8, and 10 in cerebrospinal fluid and plasma after traumatic brain injury. Shock. 2001; 15(6): 421-426. doi:10.1097/00024382-200115060-00002
31.    Fassbender K, Schneider S, Bertsch T, et al. Temporal profile of release of interleukin-1beta in neurotrauma. Neurosci Lett. 2000; 284(3): 135-138. doi:10.1016/S0304-3940(00)00977-0
32.    Kossmann T, Hans VHJ, Imhof HG, et al. Intrathecal and serum interleukin-6 and the acute-phase response in patients with severe traumatic brain injuries. Shock. 1995; 4(5): 311-317. doi:10.1097/00024382-199511000-00001
33.    Lambert G, Johansson M, Ågren H, Friberg P. Reduced brain norepinephrine and dopamine release in treatment-refractory depressive illness: Evidence in support of the catecholamine hypothesis of mood disorders. Arch Gen Psychiatry. 2000; 57(8): 787-793. doi:10.1001/ARCHPSYC.57.8.787
34.    Braestrup C, Andersen H, Randrup A. The monoamine oxidase B inhibitor deprenyl potentiates phenylethylamine behaviour in rats without inhibition of catecholamine metabolite formation. Eur J Pharmacol. 1975; 34(1): 181-187. doi:10.1016/0014-2999(75)90238-1
35.    Corsellis JAN. Boxing and the brain. BMJ  Br Med J. 1989;298(6666):105. doi:10.1136/BMJ.298.6666.105
36.    Blaylock R, Maroon J. Immunoexcitotoxicity as a central mechanism in chronic traumatic encephalopathy-A unifying hypothesis. Surg Neurol Int. 2011; 2(1): 107. doi:10.4103/2152-7806.83391
37.    Stein TD, Alvarez VE, McKee AC. Chronic traumatic encephalopathy: a spectrum of neuropathological changes following repetitive brain trauma in athletes and military personnel. Alzheimers Res Ther. 2014; 6(1): 4. doi:10.1186/ALZRT234
38.    Giza CC, Hovda DA. The new neurometabolic cascade of concussion. Neurosurgery. 2014; 75(3): S24-S33. doi:10.1227/NEU.0000000000000505
39.    Saulle M, Greenwald BD. Chronic Traumatic Encephalopathy: A Review. Rehabil Res Pract. 2012; 2012: 1-9. doi:10.1155/2012/816069
40.    McKee AC, Cantu RC, Nowinski CJ, et al. Chronic traumatic encephalopathy in athletes: progressive tauopathy after repetitive head injury. J Neuropathol Exp Neurol. 2009; 68(7): 709-735. doi:10.1097/NEN.0B013E3181A9D503
41.    Uryu K, Chen XH, Martinez D, et al. Multiple proteins implicated in neurodegenerative diseases accumulate in axons after brain trauma in humans. Exp Neurol. 2007; 208(2): 185-192. doi:10.1016/J.EXPNEUROL.2007.06.018
42.    McKee AC, Gavett BE, Stern RA, et al. TDP-43 proteinopathy and motor neuron disease in chronic traumatic encephalopathy. J Neuropathol Exp Neurol. 2010; 69(9): 918-929. doi:10.1097/NEN.0B013E3181EE7D85
43.    Valadi N. Evaluation and Management of Amyotrophic Lateral Sclerosis. Prim Care- Clin Off Pract. 2015; 42(2): 177-187. doi:10.1016/J.POP.2015.01.009
44.    Johnson VE, Stewart W, Trojanowski JQ, Smith DH. Acute and chronically increased immunoreactivity to phosphorylation- independent but not pathological TDP-43 after a single traumatic brain injury in humans. Acta Neuropathol. 2011; 122(6): 715-726. doi:10.1007/S00401-011-0909-9
45.    Zlokovic B V. The Blood-Brain Barrier in Health and Chronic Neurodegenerative Disorders. Neuron. 2008; 57(2): 178-201. doi:10.1016/J.NEURON.2008.01.003
46.    Shlosberg D, Benifla M, Kaufer D, Friedman A. Blood-brain barrier breakdown as a therapeutic target in traumatic brain injury. Nat Rev Neurol. 2010; 6(7): 393-403. doi:10.1038/NRNEUROL.2010.74
47.    Franz CK, Joshi D, Daley EL, et al. Impact of traumatic brain injury on amyotrophic lateral sclerosis: From bedside to bench. J Neurophysiol. 2019; 122(3): 1174-1185. doi:10.1152/JN.00572.2018
48.    Wiesner D, Tar L, Linkus B, et al. Reversible induction of TDP-43 granules in cortical neurons after traumatic injury. Exp Neurol. 2018; 299: 15-25. doi:10.1016/J.EXPNEUROL.2017.09.011
49.    McKee AC, Stein TD, Nowinski CJ, et al. The spectrum of disease in chronic traumatic encephalopathy. Brain. 2013; 136(Pt1): 43-64. doi:10.1093/BRAIN/AWS307
50.    Kaur P, Sharma S. Recent Advances in Pathophysiology of Traumatic Brain Injury. Curr Neuropharmacol. 2018; 16(8): 1224-1238. doi:10.2174/1570159X15666170613083606
51.    Fordington S, Manford M. A review of seizures and epilepsy following traumatic brain injury. J Neurol. 2020; 267(10): 3105-3111. doi:10.1007/S00415-020-09926-W
52.    Zhang X, Chen Y, Jenkins LW, Kochanek PM, Clark RSB. Bench-to-bedside review: Apoptosis/programmed cell death triggered by traumatic brain injury. Crit Care. 2005; 9(1): 66-75. doi:10.1186/CC2950
53.    Tehse J, Taghibiglou C. The overlooked aspect of excitotoxicity: Glutamate-independent excitotoxicity in traumatic brain injuries. Eur J Neurosci. 2019; 49(9): 1157-1170. doi:10.1111/EJN.14307
54.    Puttachary S, Sharma S, Stark S, Thippeswamy T. Seizure-induced oxidative stress in temporal lobe epilepsy. Biomed Res Int. 2015; 2015. doi:10.1155/2015/745613
55.    Dienel GA. Lactate shuttling and lactate use as fuel after traumatic brain injury: Metabolic considerations. J Cereb Blood Flow Metab. 2014; 34(11): 1736-1748. doi:10.1038/JCBFM.2014.153
56.    Jarrahi A, Braun M, Ahluwalia M, et al. Revisiting traumatic brain injury: From molecular mechanisms to therapeutic interventions. Biomedicines. 2020;8(10):1-42. doi:10.3390/BIOMEDICINES8100389
57.    Rowley S, Patel M. Mitochondrial involvement and oxidative stress in temporal lobe epilepsy. Free Radic Biol Med. 2013; 62: 121-131. doi:10.1016/J.FREERADBIOMED.2013.02.002
58.    Trotti D, Danbolt NC, Volterra A. Glutamate transporters are oxidant-vulnerable: a molecular link between oxidative and excitotoxic neurodegeneration? Trends Pharmacol Sci. 1998; 19(8): 328-334. doi:10.1016/S0165-6147(98)01230-9
59.    Chen Y, Qin C, Huang J, et al. The role of astrocytes in oxidative stress of central nervous system: A mixed blessing. Cell Prolif. 2020;53(3). doi:10.1111/CPR.12781
60.    Levin B, Bhardwaj A. Chronic traumatic encephalopathy: A critical appraisal. Neurocrit Care. 2014; 20(2): 334-344. doi:10.1007/S12028-013-9931-1
61.    Kokjohn TA, Maarouf CL, Daugs ID, et al. Neurochemical profile of dementia pugilistica. J Neurotrauma. 2013; 30(11): 981-997. doi:10.1089/NEU.2012.2699
62.    Chauhan NB. Chronic neurodegenerative consequences of traumatic brain injury. Restor Neurol Neurosci. 2014; 32(2): 337-365. doi:10.3233/RNN-130354
63.    Wong JC, Hazrati LN. Parkinson’s disease, parkinsonism, and traumatic brain injury. Crit Rev Clin Lab Sci. 2013; 50(4-5): 103-106. doi:10.3109/10408363.2013.844678
64.    Gardner RC, Byers AL, Barnes DE, Li Y, Boscardin J, Yaffe K. Mild TBI and risk of Parkinson disease: A Chronic Effects of Neurotrauma Consortium Study. Neurology. 2018; 90(20): E1771-E1779. doi:10.1212/WNL.0000000000005522
65.    Miller IN, Cronin-Golomb A. Gender differences in Parkinson’s disease: Clinical characteristics and cognition. Mov Disord. 2010;25(16):2695-2703. doi:10.1002/MDS.23388
66.    Taylor CA, Bell JM, Breiding MJ, Xu L. Traumatic Brain Injury-Related Emergency Department Visits, Hospitalizations, and Deaths - United States, 2007 and 2013. MMWR Surveill Summ. 2017; 66(9): 1-16. doi:10.15585/MMWR.SS6609A1
67.    Delic V, Beck KD, Pang KCH, Citron BA. Biological links between traumatic brain injury and Parkinson’s disease. Acta Neuropathol Commun. 2020; 8(1). doi:10.1186/S40478-020-00924-7
68.    Acosta SA, Tajiri N, de la Pena I, et al. Alpha-Synuclein as a pathological link between chronic traumatic brain injury and parkinson’s disease. J Cell Physiol. 2015; 230(5): 1024-1032. doi:10.1002/JCP.24830
69.    Smith DH, Johnson VE, Stewart W. Chronic neuropathologies of single and repetitive TBI: substrates of dementia? Nat Rev Neurol. 2013; 9(4): 211-221. doi:10.1038/NRNEUROL.2013.29
70.    Conway KA, Harper JD, Lansbury PT. Fibrils formed in vitro from alpha-synuclein and two mutant forms linked to Parkinson’s disease are typical amyloid. Biochemistry. 2000; 39(10): 2552-2563. doi:10.1021/BI991447R


Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags


Not Available