Author(s): Kanchan Nikam, Sachin Bhusari, Mohini Salunke, Pravin Wakte


DOI: 10.52711/0974-360X.2024.00297   

Address: Kanchan Nikam*, Sachin Bhusari, Mohini Salunke, Pravin Wakte
University Department of Chemical Technology, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad - 431004, Maharashtra, India.
*Corresponding Author

Published In:   Volume - 17,      Issue - 4,     Year - 2024

Due to the unrivalled abundance of chemical components, natural products derived from medicinal plants, whether in their pure form or as standardised extracts, provide limitless potential for new medications. Natural remedies have been used all over the world as alternatives to hormone replacement therapy and as treatments for chronic illnesses like asthma, cancer, diabetes, inflammatory, and analgesic conditions since ancient times. Bioactive substances are used in a variety of commercial fields, including the pharmaceutical, food, and chemical industries, demonstrating the need for the best and most standardised technique to remove these active components from plant materials. As truth, a lot of conventional extraction techniques have a number of drawbacks, including poor effectiveness, high energy costs, and low yields. Hence, the development of new and advanced extraction techniques is essential. Higher productivity, less work, and reduced costs are a few benefits of the new technology. A variety of innovative extraction technology combinations that are also appropriate for heat-labile chemicals have been found. The objective of this review work is to offer a thorough overview of the various approaches for extracting natural compounds from medicinal plants.

Cite this article:
Kanchan Nikam, Sachin Bhusari, Mohini Salunke, Pravin Wakte. An Overview of Techniques for Extracting Bioactive Components from Naturals Sources. Research Journal of Pharmacy and Technology.2024; 17(4):1874-0. doi: 10.52711/0974-360X.2024.00297

Kanchan Nikam, Sachin Bhusari, Mohini Salunke, Pravin Wakte. An Overview of Techniques for Extracting Bioactive Components from Naturals Sources. Research Journal of Pharmacy and Technology.2024; 17(4):1874-0. doi: 10.52711/0974-360X.2024.00297   Available on:

1.    Gori A. et al. Development of an innovative maceration technique to optimize extraction and phase partition of natural products. Fitoterapia. 2021; 148-
2.    Zhang QW. Lin L. G. and Ye WC. Techniques for extraction and isolation of natural products: A comprehensive review. Chinese Medicine (United Kingdom). 2018; 13-
3.    Salunke M. Wakure B and Wakte P. Neoteric Approaches for Extraction of Bioactives from Marine Macroflora. International Journal of Research in Pharmaceutical Sciences. 2021; 12: 2507–2518.
4.    Azmir J. et al. Techniques for extraction of bioactive compounds from plant materials: A review. J Food Eng. 2013; 117: 426–436-
5.    Cheok CY. Salman HAK. and Sulaiman R. Extraction, and quantification of saponins: A review. Food Research International. 2014; 59: 16–40
6.    Rasul MG. Extraction, Isolation and Characterization of Natural Products from Medicinal Plants. International Journal of Basic Sciences and Applied Computing. 2018.
7.    Markandeya AG. Firke NP. Gore SS. Salunke-Gawali S. and Pingale SS. Antibacterial Activity of Celocia argentea Leaves Extract in Organic Solvents. Research Journal of Pharmacology and Pharmacodynamics. 2014; 6: 79–81.
8.    Shmygareva AA. Kurkin VA. Sankov AN. Rybalko MV. and Semeniuta KN. Method of obtaining of extract by the method of modified maceration. Res J Pharm Technol. 2019; 12: 5956–5958.
9.    Marie I. Ngaha Njila. Ebrahimi Mahdi. Dieudonne Massoma Lembe. Zacharie Nde and Doriane Nyonseu. Review on Extraction and Isolation of Plant Secondary Metabolites. 2017. doi:10.15242/IIE.C0517024.
10.    Mahale SM. and Goswami-Giri AS. Composition and Characterization of Refined Oil Compared with Its Crude Oil from Waste Obtained from Mangifera indica. Asian J. Research Chem. 2011; 4: 1415–1419.
11.    Grigonis D. Venskutonis PR. Sivik B. Sandahl M. and Eskilsson CS. Comparison of different extraction techniques for isolation of antioxidants from sweet grass (Hierochloë odorata). Journal of Supercritical Fluids. 2005; 33: 223–233.
12.    Oh, C. H. Soxhlet-assisted matrix solid phase dispersion for the quantitative analysis of 2-Ethylhexan-1-ol. Res J Pharm Technol. 2017;10: 2581–2586.
13.    Silva LV. Nelson DL. Drummond MF. B. Dufossé L. and Glória MBA. Comparison of hydrodistillation methods for the deodorization of turmeric. Food Research International. 2005; 38: 1087–1096.
14.    Chemat F. et al. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols, and applications. A review. Ultrasonics Sonochemistry. 2017; 34: 540–560-
15.    Priyanka S. Kirubagaran R. and Mary Leema JT. Optimization of ultrasound-assisted extraction (Uae) of zeaxanthin from marine microalgae dunaliella tertiolecta (niot 141) using response surface methodology. Res J Pharm Technol. 2021;14: 1729–1735.
16.    Bucar F. Wube A. and Schmid M. Natural product isolation-how to get from biological material to pure compounds. Natural Product Reports. 2013; 30: 525–545-
17.    Mendiola JA. Herrero M. Cifuentes A. and Ibañez E. Use of compressed fluids for sample preparation: Food applications. Journal of Chromatography A. 2007; 1152: 234–246-
18.    Nieto A. Borrull F. Pocurull E. and Marcé RM. Pressurized liquid extraction of pharmaceuticals from sewage-sludge. J Sep Sci. 2007; 30: 979–984.
19.    Raut P. et al. Emerging pressurized liquid extraction (PLE) techniques as an innovative green technology for the effective extraction of the active phytopharmaceuticals. Research Journal of Pharmacy and Technology. 2015; 8: 800–810-
20.    Santos DT. Veggi PC. and Meireles MAA. Optimization and economic evaluation of pressurized liquid extraction of phenolic compounds from jabuticaba skins. J Food Eng. 2012; 108: 444–452.
21.    Destandau E. Michel T. and Elfakir C. Microwave-assisted extraction.RSC Green Chemistry. 2013; 113–156- doi:10.1039/9781849737579-00113.
22.    Jain T. Jain V. Pandey R. Vyas A. and Shukla S. Microwave assisted extraction for phytoconstituents-An overview. Asian J. Research Chem. 2009; 2: 19–25.
23.    Grosso C. Valentão P. Ferreres F. and Andrade P. Alternative and Efficient Extraction Methods for Marine-Derived Compounds. Mar Drugs. 2015; 13: 3182–3230.
24.    Choi I. Jun Choi S. Keun Chun J. and Wha Moon T. Extraction yield of soluble protein and microstructure of soybean affected by microwave heating. J Food Process Preserv. 2006;30: 407–419.
25.    Letellier M. and Budzinski H. Microwave assisted extraction of organic compounds. Analusis. 1999; 27: 259–271.
26.    Maier T. Göppert A. Kammerer DR. Schieber A. and Carle R. Optimization of a process for enzyme-assisted pigment extraction from grape (Vitis vinifera L.) pomace. European Food Research and Technology. 2008; 227: 267–275.
27.    Pawar AR. Vikhe DN. and Jadhav RS. Recent Advances in Extraction Techniques of Herbals - A Review. Asian Journal of Research in Pharmaceutical Science. 2020; 10: 287–292.
28.    Lu J. Feng X. Han Y. and Xue C. Optimization of subcritical fluid extraction of carotenoids and chlorophyll a from Laminaria japonica Aresch by response surface methodology. J Sci Food Agric. 2014; 94: 139–145.
29.    Capuzzo A. Maffei ME. and Occhipinti A. Supercritical fluid extraction of plant flavors and fragrances. Molecules. 2013; 18: 7194–7238
30.    Janghel A. et al. Supercritical fluid extraction (SFE) techniques as an innovative green technology for the effective extraction of the active phytopharmaceuticals. Research Journal of Pharmacy and Technology. 2015; 8: 775–786
31.    Núñez GA. del Valle JM. and Navia D. Supercritical CO2 oilseed extraction in multi-vessel plants. 3. Effect of extraction pressure and plant size on production cost. Journal of Supercritical Fluids. 2017; 122: 109–118.
32.    Sairam P. Ghosh S. Jena S. Rao K. and Banji D. Supercritical Fluid Extraction (SFE)-An Overview. Asian J. Res. Pharm. Sci. 2012; 2: 112–120.
33.    Reddy, H. K. et al. Subcritical water extraction of lipids from wet algae for biodiesel production. Fuel. 2014; 133: 73–81.
34.    Wakure BS. Yadav AV. Bhatia NM. and Salunke MA. Supercritical Fluid Technology: Nascent Contrivance for Pharmaceutical Product Development. Int J Pharm Sci Res. 2012; 3: 1872–1882.
35.    Sánchez-Camargo AP. Mendiola JA. Ibáñez E. and Herrero M. Supercritical Fluid Extraction. Module in Chemistry, Molecular Sciences and Chemical Engineering. Elsevier, 2014 doi:10.1016/B978-0-12-409547-2.10753-X.
36.    Mendes RL. Nobre BP. Cardoso MT. Pereira AP. and Palavra AF. Supercritical carbon dioxide extraction of compounds with pharmaceutical importance from microalgae. Inorganica Chim Acta. 2003; 356: 328–334.
37.    Quitain, A. T., Kai, T., Sasaki, M. and Goto, M. Supercritical carbon dioxide extraction of fucoxanthin from Undaria pinnatifida. J Agric Food Chem. 2013; 61: 5792–5797.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

56th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Recent Articles


Not Available