Author(s): Minhajul Arfeen, Somayah Saad Alharbi, Abeer Nowaf Alharbi


DOI: 10.52711/0974-360X.2024.00232   

Address: Minhajul Arfeen*, Somayah Saad Alharbi, Abeer Nowaf Alharbi
Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia.
*Corresponding Author

Published In:   Volume - 17,      Issue - 4,     Year - 2024

Alzheimer’s diseases is a neurodegenerative progressive diseases accompanied by complex pathology. Because of its complex pathology, multi-target ligands are considered as an attractive strategy for new drug development against AD. In this context dual inhibition of AChE and GSK-3ß can be considered as an important strategy. In this work, various polyphenolic compounds from the literature were collected and evaluated against AChE and GSK-3ß using molecular docking. The results indicated good binding potential of all the docked compounds for GSK-3ß (9kcal/mol), while weak to good binding potential for AChE (8 to 12kcal/mol). The binding mode analysis of GSK-3 docked complexes showed interactions with key residues like Asp133 and Val135 which are important for molecular recognition. Additionally, the docked compounds showed interactions with Leu132, Arg141 and Cys199, the residues important for potency and selectivity. With respect to AChE, the compounds mostly occupied peripheral aromatic site in the active site of AChE, the site important for binding of ligands and inhibitor. The binding mode analysis showed interactions with key residues Tyr124, Ser293 and Arg296 important for substrate binding and recognition. Further the polar interactions were also noted for His447 and Ser203 (residues important for Ach hydrolysis) in some of the identified ligands. Overall the work resulted in the identification of eight compounds 5'-geranyl-5,7,2',4'tetrahydroxyflavone-2, Kuwanon E 4, Gossypetin, Kaempferide, Galangin, Kaempferol, baicalein and Ellagic acid with the potential dual inhibition of AChE and GSK-3ß. It should be noted that kaempferide was not reported in the literature for AChE inhibition, while except baicalein none of the compounds were reported for GSK-3ß. Further, the eight identified compounds were subjected for ADME profiling using SwissADME which showed their drug like character. Therefore, based on the results from this study, the above mentioned eight compounds can be looked upon with the potential of dual inhibition against AChE and GSK-3ß.

Cite this article:
Minhajul Arfeen, Somayah Saad Alharbi, Abeer Nowaf Alharbi. Screening of Polyphenolic compounds to identify dual inhibitors against Glycogen Synthase 3β and Acetylcholinesterase for the treatment of Alzheimer’s Diseases. Research Journal of Pharmacy and Technology.2024; 17(4):1467-4. doi: 10.52711/0974-360X.2024.00232

Minhajul Arfeen, Somayah Saad Alharbi, Abeer Nowaf Alharbi. Screening of Polyphenolic compounds to identify dual inhibitors against Glycogen Synthase 3β and Acetylcholinesterase for the treatment of Alzheimer’s Diseases. Research Journal of Pharmacy and Technology.2024; 17(4):1467-4. doi: 10.52711/0974-360X.2024.00232   Available on:

1.    Jarrar M, Abusalah MAH, Albaker W, et al. Prevalence of Type 2 Diabetes Mellitus in the General Population of Saudi Arabia, 2000–2020: A Systematic Review and Meta-Analysis of Observational Studies. Saudi J Med Med Sci. 2023; 11(1). doi:10.4103/sjmms.sjmms_394_22
2.    Munshi MN. Cognitive Dysfunction in Older Adults With Diabetes: What a Clinician Needs to Know. Diabetes Care. 2017; 40(4): 461-467. doi:10.2337/dc16-1229
3.    Rizzi L, Rosset I, Roriz-Cruz M. Global epidemiology of dementia: Alzheimer’s and vascular types. Biomed Res Int. 2014; 2014(Figure 1). doi:10.1155/2014/908915
4.    Arfeen M, Bharatam P. Design of Glycogen Synthase Kinase-3 Inhibitors: An Overview on Recent Advancements. Curr Pharm Des. 2013;19(26):4755-4775. doi:10.2174/1381612811319260007
5.    Summers SA, Kao AW, Kohn AD, et al. The Role of Glycogen Synthase Kinase 3β in Insulin-stimulated Glucose Metabolism*. J Biol Chem. 1999; 274(25): 17934-17940. doi:
6.    Wang L, Li J, Di L jun. Glycogen synthesis and beyond, a comprehensive review of GSK3 as a key regulator of metabolic pathways and a therapeutic target for treating metabolic diseases. Med Res Rev. 2022; 42(2): 946-982. doi:
7.    Nikoulina SE, Ciaraldi TP, Mudaliar S, Carter L, Johnson K, Henry RR. Inhibition of Glycogen Synthase Kinase 3 Improves Insulin Action and Glucose Metabolism in Human Skeletal Muscle . Diabetes. 2002; 51(7): 2190-2198. doi:10.2337/diabetes.51.7.2190
8.    MacAulay K, Woodgett JR. Targeting glycogen synthase kinase-3 (GSK-3) in the treatment of Type 2 diabetes. Expert Opin Ther Targets. 2008; 12(10): 1265-1274. doi:10.1517/14728222.12.10.1265
9.    Zhang Y, Huang N qu, Yan F, et al. Diabetes mellitus and Alzheimer’s disease: GSK-3β as a potential link. Behav Brain Res. 2018; 339: 57-65. doi:
10.    Sayas CL, Ávila J. GSK-3 and tau: A key duet in alzheimer’s disease. Cells. 2021;10(4):1-19. doi:10.3390/cells10040721
11.    Deeksha K, Abhishek N. A Review on Alzheimer Disease. Int J Neurodegener Disord. 2019; 2(1): 59-63. doi:10.23937/2643-4539/1710010
12.    Lauretti E, Dincer O, Praticò D. Glycogen synthase kinase-3 signaling in Alzheimer’s disease. Biochim Biophys Acta - Mol Cell Res. 2020; 1867(5): 118664. doi:
13.    Jope RS, Yuskaitis CJ, Beurel E. Glycogen Synthase Kinase-3 (GSK3): Inflammation, Diseases, and Therapeutics. Neurochem Res. 2007; 32(4): 577-595. doi:10.1007/s11064-006-9128-5
14.    Corasaniti MT, Maiuolo J, Maida S, et al. Cell signaling pathways in the mechanisms of neuroprotection afforded by bergamot essential oil against NMDA-induced cell death in vitro. Br J Pharmacol. 2007; 151(4): 518-529. doi:
15.    Beurel E, Jope RS. The paradoxical pro- and anti-apoptotic actions of GSK3 in the intrinsic and extrinsic apoptosis signaling pathways. Prog Neurobiol. 2006; 79(4): 173-189. doi:
16.    Velraj M, Lavaniya N. Alzheimer disease and a potential role of herbs-A review. Res J Pharm Technol. 2018; 11(6): 2695-2700. doi:10.5958/0974-360X.2018.00498.5
17.    Arciniegas Ruiz SM, Eldar-Finkelman H. Glycogen Synthase Kinase-3 Inhibitors: Preclinical and Clinical Focus on CNS-A Decade Onward. Front Mol Neurosci. 2022; 14(January): 1-25. doi:10.3389/fnmol.2021.792364
18.    Sharifi-Rad J, Quispe C, Castillo CMS, et al. Ellagic Acid: A Review on Its Natural Sources, Chemical Stability, and Therapeutic Potential. Oxid Med Cell Longev. 2022; 2022. doi:10.1155/2022/3848084
19.    Saha D, Tamrakar A. Xenobiotics , Oxidative Stress , Free Radicals Vs . Antioxidants : Dance Of Death to Heaven ’ s Life . Asian J Res Pharm Sci. 2011; 1(2): 36-38.
20.    R. Caroline Jeba, G. Abeetha Sandhya, Niranjan Das, C. Suchoritha Shau SAK. Anticancer Activity of Microwave Assisted Polyphenolic Compounds Extracted from Combinations of Curcuma Longa and Camellia Sinensisagainst Lung Cancer Cell Line. Res J Pharm Technol. 2023; 16(5): 2192-2196. doi:10.52711/0974-360X.2023.00360
21.    Han DH, Lee MJ, Kim JH. Antioxidant and apoptosis-inducing activities of ellagic acid. Anticancer Res. 2006; 26(5A): 3601-3606.
22.    Srivastava A, Mishra A, Rai AK. Synthesis, characterization and evaluation of ulcerogenic potential for NSAIDs-alendronate based prodrug. Res J Pharm Technol. 2020; 13(5): 2107-2111. doi:10.5958/0974-360X.2020.00379.0
23.    Pei S, Zhao H, Chen L, et al. Preventive Effect of Ellagic Acid on Cardiac Dysfunction in Diabetic Mice through Regulating DNA Hydroxymethylation. J Agric Food Chem. 2022; 70(6): 1902-1910. doi:10.1021/acs.jafc.1c07574
24.    Panchal SK, Ward L, Brown L. Ellagic acid attenuates high-carbohydrate, high-fat diet-induced metabolic syndrome in rats. Eur J Nutr. 2013; 52(2): 559-568. doi:10.1007/s00394-012-0358-9
25.    Srivastava A, Mishra A, Rai AK. Nsaids-alendronate based prodrug for bone specific drug targeting. Res J Pharm Technol. 2020; 13(7): 3520-3523. doi:10.5958/0974-360X.2020.00623.X
26.    García-Niño WR, Ibarra-Lara L, Cuevas-Magaña MY, Sánchez-Mendoza A, Armada E. Protective activities of ellagic acid and urolithins against kidney toxicity of environmental pollutants: A review. Environ Toxicol Pharmacol. 2022; 95: 103960. doi:
27.    Aslan A, Gok O, Beyaz S, Ağca CA, Erman O, Zerek A. Ellagic acid prevents kidney injury and oxidative damage via regulation of Nrf-2/NF-κB signaling in carbon tetrachloride induced rats. Mol Biol Rep. 2020; 47(10): 7959-7970. doi:10.1007/s11033-020-05873-x
28.    Amor AJ, Gómez-Guerrero C, Ortega E, Sala-Vila A, Lázaro I. Ellagic acid as a tool to limit the diabetes burden: Updated evidence. Antioxidants. 2020; 9(12): 1-26. doi:10.3390/antiox9121226
29.    Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010; 31(2): 455-461.
30.    Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017; 7(1): 42717. doi:10.1038/srep42717
31.    Dhinakaran S, Tamilanban T, Chitra V. Targets for Alzheimer’s Disease. Res J Pharm Technol. 2019; 12(6): 3073. doi:10.5958/0974-360x.2019.00521.3
32.    Chitra V, Narayanan J. In vitro screening for anti-cholinesterase and anti oxidant activity of extract of garcinia hanburyi. Res J Pharm Technol. 2018; 11(7): 2918-2921. doi:10.5958/0974-360X.2018.00538.3
33.    Arfeen M, Bhagat S, Patel R, et al. Design, synthesis and biological evaluation of 5-benzylidene-2-iminothiazolidin-4-ones as selective GSK-3β inhibitors. Eur J Med Chem. 2016; 121: 727-736. doi:10.1016/j.ejmech.2016.04.075
34.    Arfeen M, Patel R, Khan T, Bharatam P V. Molecular dynamics simulation studies of GSK-3β ATP competitive inhibitors: Understanding the factors contributing to selectivity. J Biomol Struct Dyn. 2015; 33(12): 2578-2593. doi:10.1080/07391102.2015.1063457
35.    Mani V, Arfeen M, Rabbani SI, Shariq A, Amirthalingam P. Levetiracetam Ameliorates Doxorubicin-Induced Chemobrain by Enhancing Cholinergic Transmission and Reducing Neuroinflammation Using an Experimental Rat Model and Molecular Docking Study. Molecules. 2022; 27(21). doi:10.3390/molecules27217364
36.    Dvir H, Silman I, Harel M, Rosenberry TL, Sussman JL. Acetylcholinesterase: From 3D structure to function. Chem Biol Interact. 2010; 187(1): 10-22. doi:
37.    Atanasova M, Dimitrov I, Ivanov S, et al. Virtual Screening and Hit Selection of Natural Compounds as Acetylcholinesterase Inhibitors. Molecules. 2022; 27(10): 1-19. doi:10.3390/molecules27103139
38.    Rosenberry TL, Brazzolotto X, MacDonald IR, et al. Comparison of the binding of reversible inhibitors to human butyrylcholinesterase and acetylcholinesterase: A crystallographic, kinetic and calorimetric study. Molecules. 2017; 22(12): 1-21. doi:10.3390/molecules22122098
39.    Sussman JL, Harel M, Frolow F, et al. Atomic Structure of Acetylcholinesterase from Torpedo californica: A Prototypic Acetylcholine-Binding Protein. Science (80-). 1991; 253(5022): 872-879. doi:10.1126/science.1678899
40.    Rouquette J, Choesmel V, Gleizes PE. Nuclear export and cytoplasmic processing of precursors to the 40S ribosomal subunits in mammalian cells. EMBO J. 2005; 24(16): 2862-2872. doi:
41.    Ramachandran V, Khan I, Sugumar S, Sundaram V. Antioxidant, anti-inflammatory and anticholinergic action of berberine attenuates diabetic encephalopathy: Behavioral and biochemical evidences. Res J Pharm Technol. 2020; 13(10): 4550. doi:10.5958/0974-360x.2020.00802.1
42.    Kim JY, Lee WS, Kim YS, et al. Isolation of Cholinesterase-Inhibiting Flavonoids from Morus lhou. J Agric Food Chem. 2011; 59(9): 4589-4596. doi:10.1021/jf200423g
43.    Kumar Patel D, Patel K. P-MD005. Neuroprotective effects of gossypetin in alzheimer’s disease: Therapeutic approaches to evaluate the acetylcholinesterase and butyl cholinesterase inhibitory potential. Clin Neurophysiol. 2021; 132(8): e97-e98. doi:
44.    Guo AJY, Xie HQ, Choi RCY, et al. Galangin, a flavonol derived from Rhizoma Alpiniae Officinarum, inhibits acetylcholinesterase activity in vitro. Chem Biol Interact. 2010; 187(1): 246-248. doi:
45.    Bahrani H, Mohamad J, Paydar M, Rothan AH. Isolation and Characterisation of Acetylcholinesterase Inhibitors from Aquilaria subintegra for the Treatment of Alzheimer’s Disease (AD). Curr Alzheimer Res. 2014; 11(2): 206-214. doi:
46.    Liao Y, Hu X, Pan J, Zhang G. Inhibitory Mechanism of Baicalein on Acetylcholinesterase: Inhibitory Interaction, Conformational Change, and Computational Simulation. Foods. 2022; 11(2). doi:10.3390/foods11020168
47.    Oh JM, Jang HJ, Kang MG, et al. Acetylcholinesterase and monoamine oxidase-B inhibitory activities by ellagic acid derivatives isolated from Castanopsis cuspidata var. sieboldii. Sci Rep. 2021; 11(1): 13953. doi:10.1038/s41598-021-93458-4
48.    Dhananjayan K, Sumathy A, Palanisamy S. Molecular Docking Studies and in-vitro Acetylcholinesterase Inhibition by Terpenoids and Flavonoids. Asian J Res Chem. 2013; 6(11): 1011-1017.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

56th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Recent Articles


Not Available