Author(s):
Monika Nijhawan, Trapti Saxena, Sadhna Dhyagala, Gunnam Sailaja, Rajeswari Aleti
Email(s):
priyashanijhawan@gmail.com
DOI:
10.52711/0974-360X.2024.00281
Address:
Monika Nijhawan1*, Trapti Saxena2, Sadhna Dhyagala3, Gunnam Sailaja4, Rajeswari Aleti5
1,4Associate Professor, Department of Pharmaceutics, Gokaraju Rangaraju College of Pharmacy, Hyderabad, Telangana, India.
2Associate Professor, Department of Pharmaceutics, G. Pulla Reddy College of Pharmacy, Hyderabad, Telangana, India.
3Research Scholar, Gokaraju Rangaraju College of Pharmacy, Hyderabad, Telangana, India.
5Assistant Professor, Department of Pharmaceutics, Gokaraju Rangaraju College of Pharmacy, Hyderabad, Telangana, India.
*Corresponding Author
Published In:
Volume - 17,
Issue - 4,
Year - 2024
ABSTRACT:
Posaconazole is used to prevent fungal infections in patients having severely weakened immune system and has poor aqueous solubility which impairs its dissolution in upper gastric fluid producing problems in different formulations. These characteristics hinder its therapeutic application by delaying absorption rate and thereby onset of action. In the present study, an attempt was made to prepare posaconazole cocrystals with improved physicochemical properties for better therapeutic activity. Cocrystals were prepared with glutaric acid in 1:1 molar using ethanol by solvent drop grinding technique. The co-crystals formed were characterized by melting point determination, fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), and dissolution studies. Posaconazole-glutaric acid co-crystals were further formulated as fast disintegrating tablets. The IR study revealed the shifting of characteristic bands of posaconazole. The PXRD pattern indicated cocrystal crystallinity and a considerable difference in 2? value of intense peaks. The variation in fusion endotherm, which is in agreement with melting point, was designated by DSC spectra of posaconazole cocrystal. A significant improvement in the dissolution rate was observed in the case of cocrystals based tablets than pure posaconazole tablets.
Cite this article:
Monika Nijhawan, Trapti Saxena, Sadhna Dhyagala, Gunnam Sailaja, Rajeswari Aleti. Posaconazole-glutaric acid cocrystal tablet with improved Dissolution rate. Research Journal of Pharmacy and Technology.2024; 17(4):1771-6. doi: 10.52711/0974-360X.2024.00281
Cite(Electronic):
Monika Nijhawan, Trapti Saxena, Sadhna Dhyagala, Gunnam Sailaja, Rajeswari Aleti. Posaconazole-glutaric acid cocrystal tablet with improved Dissolution rate. Research Journal of Pharmacy and Technology.2024; 17(4):1771-6. doi: 10.52711/0974-360X.2024.00281 Available on: https://rjptonline.org/AbstractView.aspx?PID=2024-17-4-55
REFERENCES:
1. Blagden N, de Matas M, Gavan PT et al. Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates. Adv Drug Deliv Review. 2007;59(7): 617-30. https://doi.org/10.1016/j.addr.2007.05.011
2. Qiao N, Li M, Schlindwein WP et al. Pharmaceutical co-crystals: An overview. Int J Pharm.2011;419(1-2): 1-11.https://doi.org/10.1016/j.ijpharm.2011.07.037
3. Thakuria R, Delori, A, Jones, W, et al. Pharmaceutical co-crystals and poorly soluble drugs. Int J Pharm.2013;453(1): 101-25. https://doi.org/10.1016/j.ijpharm.2012.10.043
4. Patole T and Deshpande A. Co-crystallization - a technique for solubility enhancement. Int J Pharm Sci Res .2014;5(9): 3566-76. http://dx.doi.org/10.13040/IJPSR.0975-8232.5(9).
5. Bhardwaj S, Lipert M and Bak A. Mitigating physical stability liabilities in preclinical formulations. J Pharm Sci. 2017;106(1):31-38. https://doi.org/10.1016/j.xphs.2016.07.018
6. Yadav AV, Shete AS, Dabke AP et al. Co-crystals: A novel approach to modify physicochemical properties of active pharmaceutical ingredients. Indian J Pharm Sci, 2009;71(4):359-70.https://doi.org/10.4103%2F0250-474X.57283
7. Braham Dutt, Manjusha Choudhary and Vikas Budhwar. Enhancement of stability profile of aspirin through cocrystallization technique. Research Journal of Pharmacy and Technology. 2022; 15(2):768-2.http://dx.doi.org/10.52711/0974-360X.2022.00128
8. Gadade DD, Pekamwar SS. Pharmaceutical s: Regulatory and strategic aspects, design and development. Adv Pharm Bull. 2016;6(4):479-94.https://doi.org/10.15171%2Fapb.2016.062
9. Dave RD, Vyasa BM, Daniel PS et al. A Review on Posaconazole: A newer antifungal. Research J. Pharm. and Tech.3 (3): July-Sept. 2010; Page 694-699.
10. Cristofoletti R, Patel N, Dressman JB. Assessment of Bioequivalence of weak base formulations under various dosing conditions using physiologically based pharmacokinetic simulations in virtual Populations. Case examples: ketoconazole and posaconazole. J Pharm Sci. 2017;106(2):560-69.https://doi.org/10.1016/j.xphs.2016.10.008
11. Schiller D, Fung H. Posaconazole: An extended-spectrum triazole antifungal agent. Clin. Ther. 2007;29(9):1862-86.https://doi.org/10.1016/j.clinthera.2007.09.015
12. Walravens J, Brouwers J, Spriet I, et al. Effect of pH and comedication on gastrointestinal absorption of posaconazole: monitoring of intraluminal and plasma drug concentrations. Clin Pharmacokinet. 2011;50(11):725-34.https://doi.org/10.2165/11592630-000000000-00000
13. Barry Long, Vivek Verma, Kevin M Ryan and Luis Padrela, Generation and physicochemical Characterization of posaconazole cocrystals using gas antisolvent (GAS) and supercritical solvent (CSS) methods, J. Supercrit. Fluids. 2020;doi:https://doi.org/10.1016/j.supflu.2020.105134
14. Yadav AV, Shete AS, Dabke AP, et al. Co-crystals: A novel approach to modify physicochemical properties of active pharmaceutical ingredients. Indian J Pharm Sci, 2009;71 (4): 359-70.https://doi.org/10.4103%2F0250-474X.57283
15. Cheney ML, Weyna DR, Shan N, et al. Supramolecular architectures of meloxicam carboxylic acid co-crystals, a crystal engineering case study. Cryst. Growth. Des. 2010;10(10):4401-13.https://doi.org/10.1021/cg100514g
16. Bhalla, Y, Chadha K, Chadha, R, et al. Daidzein: An opportunity to improve its biopharmaceutical parameters. Heliyon.2019;5(11)E02669.https://doi.org/10.1016/j.heliyon.2019.e02669
17. Zalte A. G., Saudagar R. B. Preparation and Characterization of Flurbiprofen Co-crystals By Using Factorial Design. Asian J. Research Chem. 2018; 11(1):166-170.http://dx.doi.org/10.5958/0974-4150.2018.00034.2
18. Arif Budiman, Sandra Megantara, Putri Saraswati. Synthesize Glibenclamide-ascorbic acid cocrystal using solvent evaporation method to increase solubility and dissolution rate of glibenclamide. Research J. Pharm. and Tech. 2019; 12(12): 5805-5810. http://dx.doi.org/10.5958/0974-360X.2019.01005.9
19. Nijhawan M, Santhosh A, PR Sathesh Babu, et al. Solid state manipulation of lornoxicam for physicochemical characterization. Drug Dev Ind Pharm. 2014;40(9): 1163-72. https://doi.org/10.3109/03639045.2013.804834
20. Ketan B. Ramani, Vipul Patel. Development of posaconazole delayed-release tablets by high shear melt granulation technique. Research J. Pharm. and Tech. 2021; 14(1):96-102.DOI:10.5958/0974-360X.2021.00018.4
21. Sarfaraz Md, Arshad Ahmed Khan K, Doddayya H, et al. Particle design of aceclofenac-disintegrant agglomerates for direct compression by Crystallo-Co-Agglomeration Technique. Asian J. Pharm. Tech. 1(2):2011;40-48.
22. Madhuri Gaddam, Nagaraju Ravouru. A crystal engineering design to enhance the solubility, dissolution, stability and micromeritic properties of omeprazole via co-crystallization techniques. Research J. Pharm. and Tech. 2021; 14(1):356-362.http://dx.doi.org/10.5958/0974-360X.2021.00065.2
23. Arafa MF, El-Gizawy SA, Osman MA, et al. Sucralose as co-crystal co-former for hydrochlorothiazide: development of oral disintegrating tablets.Drug Dev Ind Pharm. 2016;42(8):1225-33. https://doi.org/10.3109/03639045.2015.1118495
24. Panzade P, Shendarkar G. Superior solubility and dissolution of zaltoprofen via Pharmaceuticals.Turk J Pharm Sci. 2019;16(3):310-316.
25. Costa P, Sousa lobo JM. Modeling and comparison of dissolution profiles. Eur J Pharm Sci. 2001;13:123-33.https://doi.org/10.4274%2Ftjps.galenos.2018.15013
26. CheneyML, Shan N, Healey ER, et al. Effects of crystal form on solubility and pharmacokinetics: A Crystal engineering case study of lamotrigine. Cryst. Growth Des. 2010;10(1):394–405. https://doi.org/10.1021/cg901010v
27. Fule R, Amin P. Hot melt extruded amorphous solid dispersion of posaconazole with improved bioavailability: investigating drug-polymer miscibility with advanced characterization.Biomed Res Int. gx2014; 146781. doi: 10.1155/2014/146781.
28. Hens B, Bermejo M, Tsume Y, Gonzalez-Alvarez I, Ruan H, Matsui K, Amidon GE, Cavanagh KL, Kuminek G, Benninghoff G, Fan J. Evaluation and optimized selection of supersaturating drug delivery systems of posaconazole (BCS class 2b) in the gastrointestinal simulator (GIS): An in vitro-in silico-in vivo approach. Eur. J. Pharm. Sci. 2018; 30;115:258-69.https://doi.org/10.1016/j.ejps.2018.01.039
29. Muddukrishna B.S. Krishnamurthy Bhat, Gautham G. Shenoy. Preparation and solid state characterization of paclitaxel cocrystals. Research J. Pharm. and Tech. 7(1): Jan. 2014; Page 64-69.
30. Thimmasetty J, Shashank NN, Abdul Raheem T et al. Modafinil Cocrystals for Altered Physicochemical Properties. Research Journal of Pharmacy and Technology. 2021; 14(9):4891-6.http://dx.doi.org/10.52711/0974-360X.2021.00850
31. Budipratiwi Wisudyaningsih, SolihatusSallama, Siswandono, Dwi Setyawan. The Effect of pH and Cocrystal Quercetin-Isonicotinamide on Quercetin Solubility and its Thermodynamic. Research Journal of Pharmacy and Technology. 2021; 14(9):4657-1http://dx.doi.org/10.52711/0974-360X.2021.00809.
32. NJ Babu, A Nangia. Solubility advantage of amorphous drugs and pharmaceutical s. Cryst. Growth Des. 2011; 11: 2662–79.https://doi.org/10.1021/cg200492w