Author(s): Syamsuri Syakri, Sartini Sartini, Upik A. Miskad, Aminuddin Aminuddin, Karlina Amir Tahir, Syatirah Jalaluddin, Anshari Masri

Email(s): syamsurisyakri@gmail.com

DOI: 10.52711/0974-360X.2024.00268   

Address: Syamsuri Syakri1,5*, Sartini Sartini2, Upik A. Miskad3, Aminuddin Aminuddin4, Karlina Amir Tahir5, Syatirah Jalaluddin6, Anshari Masri7
1Doctoral Program, Faculty of Medicine, Universitas Hasanuddin, Makassar, Indonesia.
2Department of Pharmacy, Faculty of Pharmacy, Universitas Hasanuddin, Makassar, Indonesia.
3Department of Anatomical Pathology, Faculty of Medicine, Universitas Hasanuddin, Makassar, Indonesia.
4Department of Nutrition, Faculty of Medicine, Universitas Hasanuddin, Makassar, Indonesia.
5Department of Pharmacy, Faculty of Medicine and Health Science, Universitas Islam Negeri Alauddin, Makassar, Indonesia.
6Department of Medical, Faculty of Medicine and Health Science, Universitas Islam Negeri Alauddin, Makassar, Indonesia.
7Department of Pharmacy, Faculty of Medicine and Health Science, Universitas Muhammadiyah, Makassar, Indonesia.
*Corresponding Author

Published In:   Volume - 17,      Issue - 4,     Year - 2024


ABSTRACT:
The red seaweed Euchema denticulatum (commonly referred to by the trade name Spinosum) is primarily farmed for extraction of carrageenan for application in foods. Tempe is a fermented soybean dish that is well-known for having a lot of protein. In the world, there are various ways to make tempeh, including soaking it in vinegar before fermentation. This study aims to determine the levels of total flavonoids and total phenolics in red algae and tempeh samples. Total phenolic content test was carried out using the Folin-Ciocalteu method using UV-Vis spectrophotometry at a wavelength of 760.5 nm. Total Flavonoid content test for total phenolic content was carried out quantitatively using a uv-vis spectrophotometer at a wavelength of 370 nm. The results showed that the average total flavonoid content in red algae was 55.25 mg/kg, and the total phenolic content in red algae was 420.56 mg/kg. whereas in tempeh the average total flavonoid content in red algae was 223.20 mg/kg, and total phenolic in tempe was 736.40 mg/kg.


Cite this article:
Syamsuri Syakri, Sartini Sartini, Upik A. Miskad, Aminuddin Aminuddin, Karlina Amir Tahir, Syatirah Jalaluddin, Anshari Masri. Analysis of Total Flavonoid and Total Phenolic Content of Red Algae (Eucheuma denticulatum (Burman) Collins et Harvey) Extract and Tempeh Extract. Research Journal of Pharmacy and Technology.2024; 17(4):1692-6. doi: 10.52711/0974-360X.2024.00268

Cite(Electronic):
Syamsuri Syakri, Sartini Sartini, Upik A. Miskad, Aminuddin Aminuddin, Karlina Amir Tahir, Syatirah Jalaluddin, Anshari Masri. Analysis of Total Flavonoid and Total Phenolic Content of Red Algae (Eucheuma denticulatum (Burman) Collins et Harvey) Extract and Tempeh Extract. Research Journal of Pharmacy and Technology.2024; 17(4):1692-6. doi: 10.52711/0974-360X.2024.00268   Available on: https://rjptonline.org/AbstractView.aspx?PID=2024-17-4-42


REFERENCES:
1.    Mufliha Murtaza, Affifa Tajammal, Muhammad Hamza Ashfaq, Waqar Mirza, Ansa Nazir, Iram Hanif. A Short Review on Synthetic Methodologies of Flavonoids. Asian Journal of Pharmacy and Technology. 2022; 12(1): 53-2. doi: 10.52711/2231-5713.2022.00010
2.    D. Singh, S. K. Sharma, Rachana Rani, Sudeep Mishra, R. A. Sharma. A New Flavonoid and other Two Flavonoids Isolated from Different Plant Parts of Selected Cassia Species. Asian J. Research Chem. 2011; 4(5): 818-821.
3.    Muthusamy Senthil Kumar, Srinivasan Balachandran, Shibani Chaudhury. Influence of Incubation Temperatures on Total Phenolic, Flavonoids Content and Free Radical Scavenging Activity of Callus from Heliotropium indicum L. Asian J. Pharm. Res. 2012; 2(4): 148-152.
4.    Preeti Tiwari. Phenolics and Flavonoids and Antioxidant Potential of Balarishta Prepared by Traditional and Modern Methods. Asian J. Pharm. Ana. 2014; 4(1): 5-10.
5.    Preeti Tiwari, Rakesh K. Patel. Estimation of Total Phenolics and Flavonoids and Antioxidant Potential of Ashwagandharishta Prepared by Traditional and Modern Methods. Asian J. Pharm. Ana. 2013; 3(4): 147-152.
6.    Jenifer. P, C.P. Balakrishnan, S. Chidambaram Pillai. In-vitro Antioxidant activity of Marine Red Algae Gracilariafoliifera. Asian J. Pharm. Tech. 2017; 7(2): 105-108. doi: 10.5958/2231-5713.2017.00018.6
7.    Daulat Singh, Santosh K. Sharma, M. S. Shekhawat, K. K. Yadav, R.A. Sharma, Anil Bansal, P. Chandrwat. Screening of Some Glycosidic Flavonoids and their Anti Microbial Activity of Cassia Pumila Lamk. Asian J. Research Chem. 2012; 5(2): 305-311.
8.    Castejón N, Parailloux M, Izdebska A, Lobinski R, Fernandes SCM. Valorization of the Red Algae Gelidiumsesquipedale by Extracting a Broad Spectrum of Minor Compounds Using Green Approaches. Mar Drugs. 2021; 19(10): 574. doi: 10.3390/md19100574.
9.    de Alencar DB, de Carvalho FCT, Rebouças RH, Dos Santos DR, Dos Santos Pires-Cavalcante KM, de Lima RL, Baracho BM, Bezerra RM, Viana FA, Dos Fernandes Vieira RHS, Sampaio AH, de Sousa OV, Saker-Sampaio S. Bioactive extracts of red seaweeds Pterocladiellacapillacea and Osmundariaobtusiloba (Floridophyceae: Rhodophyta) with antioxidant and bacterial agglutination potential. Asian Pac J Trop Med. 2016; 9(4): 372-379. doi: 10.1016/j.apjtm.2016.03.015.  
10.    Trifan A, Sava D, Bucur L, Vasincu A, Vasincu I, Aprotosoaie AC, Cioancă O, Miron A. Isolation, characterization and antioxidant activity of the crude polysaccharide from phyllophora pseudoceranoides. Rev Med Chir Soc Med Nat Iasi. 2015; 119(2): 603-9.
11.    Waluyo, Waluyo Permadi, Aef Fanni, Norma  Soedrijanto, Angky. Quality Analysis OF Seaweed Gracilariaverrucosa In Tambak Karawang Regency, West Java. Grouper. 2019; 10: 32. 10.30736/grouper.v10i1.50.
12.    Gregersen S, Kongsted AH, Nielsen RB, Hansen SS, Lau FA, Rasmussen JB, Holdt SL, Jacobsen C. Enzymatic extraction improves intracellular protein recovery from the industrial carrageenan seaweed Eucheuma denticulatum revealed by quantitative, subcellular protein profiling: A high potential source of functional food ingredients. Food Chem X. 2021; 12: 100137. doi: 10.1016/j.fochx.2021.100137.  
13.    Dahlan HA, Nambu Y, Putri SP, Fukusaki E. Effects of Soaking Tempe in Vinegar on Metabolome and Sensory Profiles. Metabolites. 2022; 12(1): 30. doi: 10.3390/metabo12010030.
14.    Borzekowski, A., Anggriawan, R., Auliyati, M., Kunte, H. J., Koch, M., Rohn, S., Karlovsky, P., and Maul, R. Formation of Zearalenone Metabolites in Tempeh Fermentation. Molecules (Basel, Switzerland). 2019; 24(15): 2697. https://doi.org/10.3390/molecules24152697
15.    Ahnan-Winarno, AD, Cordeiro, L, Winarno, FG, Gibbons, J, Xiao, H. Tempeh: A semicentennial review on its health benefits, fermentation, safety, processing, sustainability, and affordability. Compr Rev Food Sci Food Saf. 2021; 20: 1717– 1767. https://doi.org/10.1111/1541-4337.12710
16.    Roubos-van den Hil PJ, Nout MJ, van der Meulen J, Gruppen H. Bioactivity of tempe by inhibiting adhesion of ETEC to intestinal cells, as influenced by fermentation substrates and starter pure cultures. Food Microbiol. 2010; 27(5): 638-44. doi: 10.1016/j.fm.2010.02.008.  .
17.    Rahmawati D, Astawan M, Putri SP, Fukusaki E. Gas chromatography-mass spectrometry-based metabolite profiling and sensory profile of Indonesian fermented food (tempe) from various legumes. J Biosci Bioeng. 2021; 132(5): 487-495. doi: 10.1016/j.jbiosc.2021.07.001.  
18.    V. Srihari, Ashutosh Das. RemediationStrategies for Phenolic Compounds Toxicity. Asian J. Pharm. Tech. 2014; 4(4): 179-183.
19.    Shlini P., Siddalinga Murthy K.R.. Extraction of Phenolics, Proteins and Antioxidant Activity from Defatted Tamarind Kernel Powder. Asian J. Research Chem. 2011; 4(6): 936-941.
20.    Rajurkar RM, Jain RG, Bedmohta PA, Khadbadi SS. Antioxidant Activity of Phenolic Extract from Ginger (Zingiber officinale Roscoe) Rhizome. Asian J. Research Chem. 2009; 2(3): 260-261
21.    Sitanggang AB, Lesmana M, Budijanto S. Membrane-based preparative methods and bioactivities mapping of tempe-based peptides. Food Chem. 2020; 329: 127193. doi: 10.1016/j.foodchem.2020.127193.  
22.    Milić PS, Rajković KM, Stamenković OS, Veljković VB. Kinetic modeling and optimization of maceration and ultrasound-extraction of resinoid from the aerial parts of white lady's bedstraw (Galiummollugo L.). Ultrason Sonochem. 2013; 20(1): 525-34. doi: 10.1016/j.ultsonch.2012.07.017.  
23.    Hwang ES, Thi ND. Effects of Extraction and Processing Methods on Antioxidant Compound Contents and Radical Scavenging Activities of Laver (Porphyratenera). PrevNutr Food Sci. 2014; 19(1): 40-8. doi: 10.3746/pnf.2014.19.1.040.  
24.    García-Casal MN, Ramírez J, Leets I, Pereira AC, Quiroga MF. Antioxidant capacity, polyphenol content and iron bioavailability from algae (Ulva sp., Sargassum sp. and Porphyra sp.) in human subjects. Br J Nutr. 2009; 101(1): 79-85. doi: 10.1017/S0007114508994757.  
25.    Zhong B, Robinson NA, Warner RD, Barrow CJ, Dunshea FR, Suleria HAR. LC-ESI-QTOF-MS/MS Characterization of Seaweed Phenolics and Their Antioxidant Potential. Mar Drugs. 2020; 18(6): 331. doi: 10.3390/md18060331.  

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags


Not Available