Author(s): Waseem Ahmad, Harish Chandra Joshi, Nitika Garg, Rajesh Kumar


DOI: 10.52711/0974-360X.2024.00261   

Address: Waseem Ahmad1*, Harish Chandra Joshi1, Nitika Garg2, Rajesh Kumar3
1Department of Chemistry, Graphic Era Deemed to be University, Dehradun, Uttarakhand, India.
2Department of Chemistry, RKGIT, Ghaziabad, Uttar Pradesh.
3Department of Chemistry, Mewar University, Chittorgarh, Rajasthan, India.
*Corresponding Author

Published In:   Volume - 17,      Issue - 4,     Year - 2024

Oxaprozin is a phototoxic, non-steroidal anti-inflammatory drug (NSAID) which is generally used in the treatment of inflammation, swelling, stiffness, and joint pain associated with osteoarthritis and rheumatoid arthritis. In addition to these beneficial properties some adverse phototoxic effects are also associated with this drug. For this reason here in we have investigate the photochemical behavior of selected phototoxic drug Oxaprozin. In the present study the methanolic solution of Oxaprozin was irradiated with UVA light under different experimental conditions such as aerobic and anaerobic conditions. The reaction progress was strictly monitored by using thin layer chromatography which confirms the formation of three photoproducts. The isolation of the photoproduct was done by column chromatography. The structural morphology of the isolated photoproducts was established by various spectroscopic techniques such as IR, NMR, 13C NMR mass spectroscopy and High Resolution Mass Spectrometry (HRMS). On the basis of structure the photoproducts are identified as 2-(4,5diphenyl oxazol-2-yl) acetaldehyde (2), 2-(4,5diphenyl oxazol-2yl) ethanol (3), 2ethyl-4,5diphenyl Oxazole (4) by spectral studies.

Cite this article:
Waseem Ahmad, Harish Chandra Joshi, Nitika Garg, Rajesh Kumar. Photoreactivity of the Non-Steroidal Anti-inflammatory Drug Oxaprozin. Research Journal of Pharmacy and Technology.2024; 17(4):1653-6. doi: 10.52711/0974-360X.2024.00261

Waseem Ahmad, Harish Chandra Joshi, Nitika Garg, Rajesh Kumar. Photoreactivity of the Non-Steroidal Anti-inflammatory Drug Oxaprozin. Research Journal of Pharmacy and Technology.2024; 17(4):1653-6. doi: 10.52711/0974-360X.2024.00261   Available on:

1.    Ahmad W, Singh A, Chaudhary P. Photochemical transformation of flouroquinolone antibiotic drug-besifloxacin. IJP. 2015; 2: 478-483. doi:10.13040/IJPSR.
2.    Ahmad W, Zaheer MR, Gupta A, Iqbal J. Photodegradation of trimeprazine triggered by self-photogenerated singlet molecular oxygen. J. Saudi Chem Soc. 2016; 20: 543–546. doi:10.1016/j.jscs.2012.07.016
3.    Ahmad W, Zaheer MR, Gupta A, Iqbal J. Oxidative Photodegradation of Prulifloxacin under aerobic condition. Der Pharmacia Lettre. 2011; 3: 36-40.
4.    Gupta A, Ahmad W, Iqbal J, Zaheer MR. Photosensitized oxidation of fluvoxamine, a phototoxic antidepressant drug. J. Chem. Pharm. Res. 2015; 7: 330-334.
5.    Gupta A, Iqbal J, Ahmad W, Zaheer MR. Photoinduced electron transfer photodegradation of photosensitivediuretic drug-xipamide. Journal of Taibah University for Science. 2014; 8: 64–70. doi:
6.    Baciocchi E, Giacco TD, Lapi A. Oxygenation of benzyldimethylamine by singlet oxygen. Products and mechanism. Org. Lett. 2004; 6: 4791-4794. doi:
7.    Sikarwar S, Jain R. Nano Photo Catalytic Degradation of the Pharmaceutical Agent Balsalazide under UV Slurry Photo Reactor. Water Air Soil Pollut. 2015; 226: 277-279. doi:
8.    Ezzat MA, Ibrahim MA, Mamdouh RR. Photodegradation and photostability-indication of mequitazine. Spectrochimica Acta Part A. 2009; 74: 740–745. doi: 10.1016/j.saa.2009.08.006
9.    Memarian HR, Abdoli-Senejani M. Ultrasound-assisted photochemical oxidation of unsymmetrically substituted 1,4-dihydropyridines. Ultrasonics Sonochemistry. 2008; 15: 110–114. doi:
10.    Ahmad W, Parashar A, Joshi HC. A pH Dependent Photochemistry of Photosensitizing Drug Temafloxacin. IJRAR. 2018; 5: 926-929.
11.    Miolo G, Caffieri S, Dalzoppo D, Gallocchio F, Fasani E. Beyersbergen van Henegouwen. Photoactivation of corticosteroids in UV-B-exposed skin. Journal of Photochem. Photobiol. 2011; 103: 35–41. doi: 10.1016/j.jphotobiol.2011.01.009
12.    Rohit R. Panchal HS, Patange VS, Nimkar MA, Channawar BV, Bakde AV. Self Emulsifying Drug Delivery System, A Novel Approach in Drug Delivery: A Review. Research J. Pharm. and Tech. 2012; 5(1): 1-7.
13.    Hapse SA, Kamod AC, Kadam SD, Nagargoje SS. Study and Evaluation of Microbubble Drug Delivery system. Research J. Pharm. and Tech. 2012; 5(1): 27-33.
14.    Góngora JF, Elizondoa P, Hernández Ramíreza A. Photocatalytic degradation of ibuprofen using TiO2 sensitized by Ru(II) polyaze complexes. Photochem. Photobiol. Sci. 2016; 1-3. doi:
15.    De la Cruz N, Dantas RF, Gimenez J, Esplugas S. Photolysis and TiO2. Photo catalysis of the pharmaceutical propranolol: Solar and artificial light. Appl. Catal. B Environ. 2013; 130-131: 249–256. doi:
16.    Swapnil Deshpande, Swaroop Lahoti, Rohit Shah, Madhuri Shinde, Sagar Motarwar, Chaitrali Pawar. Iontophoresis: A Physical Approach to Transdermal Drug Delivery System. Research J. Pharm. and Tech. 2012; 5(2):175-180.
17.    Manvir Aujla, Rana AC, Bala Rajni, Seth Nimrata. Comparative Potential of Vesicular Carriers for Transdermal Drug Delivery: A Review. Research J. Pharm. and Tech. 2012; 5(3): 302-306.
18.    Klefah M, Leif Eriksson A. Photochemical and photophysical properties, and photodegradation mechanism, of the non-steroid anti-inflammatory drug Flurbiprofen. J Photochem Photobiol A Chem. 2009; 202: 48–56. doi: 10.1016/j.jphotochem.2008.11.010
19.    Jain Sanjay S., Hemanshu V, Agarwal, Pramod S., Jagtap Neha M., Dand, Kisan R. Jadhav, Vilasrao J. Kadam. Pulsatile drug delivery system (PDDS): A Brief Overview. Research J. Pharm. and Tech. 2012; 5(4): 449-461.
20.    Mendez-Arriaga F, Esplugas S, Giménez J. Photocatalytic degradation of non-steroidal anti-inflammatory drugs with TiO2 and simulated solar irradiation. Water Res. 2008; 42: 585–94. doi:
21.    Nakade, S. Influence of TiO2 Nanoparticle Size on Electron Diffusion and Recombination in Dye Sensitized TiO2 Solar Cells. J. Phys. Chem. B. 2003; 107: 8607–8611.
22.    Ricci A, Fasani E, Mella M, Albini A. Non communicating photoreaction paths in some pregna-1,4-diene-3,20-diones. J. Org. Chem. 2001; 66: 8086–8093. 10.1021/jo015884z
23.    Miolo, G, Caffieri S, Dalzoppo D, Ricci A, Fasani E, Albini A. Photochemistry and phototoxicity of fluocinolone 16,17-acetonide. Photochem. Photobiol. 2005; 81: 291-298. doi:
24.    Lhiaubet V, Paillous N, Lalanne NC. Comparison of DNA Damage Photoinduced by Ketoprofen, Fenofibric Acid and Benzophenone via Electron and Energy Transfer. Photochem. Photobiol. 2001; 74(5): 670–678. doi:
25.    Starek M, Krzek J, Tarsa M. TLC–Densitometric Method for Quantification of Oxaprozin, J Planar Chromate. 2010; 23: 298–303.
26.    Laduca JR, Bouman PH, Gaspari AA. Nonsteroidal anti-inflammatory drug-induced pseudoporphyria: a case series. J Cutan Med Surg. 2002; 6(4): 320-326. doi: 10.1007/s10227-001-0051-8
27.    Jeffrey Aronson K. Meyler's Side Effects of Drugs: The International Encyclopedia of Adverse drug reactions and interections. 2016; pp. 6.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

56th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Recent Articles


Not Available