Author(s): Shuvranshu Praharaj, Vandurayanpet Kaliyamoorthy Kalaichelvan, Vedigounder Murugan, Ishtiyaque Ahmad

Email(s): shuvranshup@gmail.com , vkkalaichelvan1963@gmail.com , murugan_9362@yahoo.com , ishtiyaque.ahmad@jubilantbiosys.com

DOI: 10.52711/0974-360X.2024.00250   

Address: Shuvranshu Praharaj*1, Vandurayanpet Kaliyamoorthy Kalaichelvan1, Vedigounder Murugan2, Ishtiyaque Ahmad3
1Department of Pharmacy, Annamalai University, Annamalainagar, Chidambaram, Tamilnadu, India, 608002.
2College of Pharmaceutical Sciences, Dayananda Sagar University, Bangalore, Karnataka, India, 560111.
3Jubilant Biosys Ltd., Bangalore, Karnataka, India, 560022.
*Corresponding Author

Published In:   Volume - 17,      Issue - 4,     Year - 2024


ABSTRACT:
Depression is a common mental illness, with an estimated 3.8% of global population affected. Peripheral administration of lipopolysaccharide (LPS) culminate in a distinct depressive-like behavioral syndrome, measured by increased duration of immobility in the forced swim test (FST) and anhedonia in sucrose preference tests (SPT). After 6 days of LPS stimulation, we established a depression model in C57BL/6 mice, where animals started to recover from the B/W loss brought on by the LPS and the significant immunological response that resulted in microglial activation in the brain. There was a modulation in the relative weight of the thymus and spleen observed under these experimental conditions. Ketamine having a quick onset of action reduces the emergence of depressive-like behaviour by modifying the intensity of Iba-1 in stressed mice by reducing swimming behaviour and boosting desire for sucrose. However, it did not result in an improvement in the number of microglia or CD11b cells activation in the hippocampus of C57BL/6 mice or in the relative weights of the spleen and thymus. In summary, these data emphasizes that Ketamine treatment improves depressive-like behavior and Iba-1 immunoreactivity, but the hyperactive in terms of number of microglia and CD11b expression were not modulated in the mouse hippocampus.


Cite this article:
Shuvranshu Praharaj, Vandurayanpet Kaliyamoorthy Kalaichelvan, Vedigounder Murugan, Ishtiyaque Ahmad. Evaluation of Ketamine after subacute low dosage Lipopolysaccharide-activated Microglia produced depressive-like phenotype in mice. Research Journal of Pharmacy and Technology.2024; 17(4):1585-9. doi: 10.52711/0974-360X.2024.00250

Cite(Electronic):
Shuvranshu Praharaj, Vandurayanpet Kaliyamoorthy Kalaichelvan, Vedigounder Murugan, Ishtiyaque Ahmad. Evaluation of Ketamine after subacute low dosage Lipopolysaccharide-activated Microglia produced depressive-like phenotype in mice. Research Journal of Pharmacy and Technology.2024; 17(4):1585-9. doi: 10.52711/0974-360X.2024.00250   Available on: https://rjptonline.org/AbstractView.aspx?PID=2024-17-4-24


REFERENCES:
1.    WHO. Depression [Website]. WHO official website [updated 13 September 2021; cited 2022 14 August 2022]. Available from: https://www.who.int/news-room/fact-sheets/detail/depression.
2.    Kundu Smita S DGR. Possible Influence of Loxoprofen in Lipopolysaccharide Induced Alterations in Brain Serotonin, Noradrenaline and Dopamine Levels in Chronic Mild Stress Treated Mice. Research Journal of Pharmacy and Technology. 2022; 15(5): 2081-6. doi: 10.52711/0974-360X.2022.00344,   
3.    D Benito Johnson RS, Prakash Rao Prathima, R Venkatnarayanan, Ashir Ahammad PM. Acute and Subacute Toxicity study of Milnacipran Hydrochloride in Wistar rats by Oral Route. Research Journal of Pharmacology and Pharmacodynamics. 2013; 5(1): 51-8.
4.    Hui B, Yao X, Zhang L, Zhou Q. Dexamethasone sodium phosphate attenuates lipopolysaccharide-induced neuroinflammation in microglia BV2 cells. Naunyn Schmiedebergs Arch Pharmacol. 2020; 393(9): 1761-8. doi: 10.1007/s00210-019-01775-3,  
5.    Lawson MA, Parrott JM, McCusker RH, Dantzer R, Kelley KW, O'Connor JC. Intracerebroventricular administration of lipopolysaccharide induces indoleamine-2,3-dioxygenase-dependent depression-like behaviors. J Neuroinflammation. 2013;10:87. doi: 10.1186/1742-2094-10-87
6.    Sun-Young Park Ki-Bong Kim S-HA, Ho-Hyun Kim. Antidepressive effects of Gami-Shinkiwhanin Immobilization stressed aging Mice. Research Journal of Pharmacy and Technology. 2018; 11(5): 1909-16. doi: 10.5958/0974-360X.2018.00354.2,   
7.    Popik P, Holuj M, Kos T, Nowak G, Librowski T, Salat K. Comparison of the Psychopharmacological Effects of Tiletamine and Ketamine in Rodents. Neurotox Res. 2017; 32(4): 544-54. doi: 10.1007/s12640-017-9759-0,  
8.    Sanmugam K. Depression is a Risk Factor for Alzheimer Disease- Review. Research Journal of Pharmacy and Technology. 2015; 8(8): 1056-8. doi: 10.5958/0974-360X.2015.00181.X,  
9.    Li Y, Shen R, Wen G, Ding R, Du A, Zhou J, et al. Effects of Ketamine on Levels of Inflammatory Cytokines IL-6, IL-1beta, and TNF-alpha in the Hippocampus of Mice Following Acute or Chronic Administration. Front Pharmacol. 2017; 8: 139. doi: 10.3389/fphar.2017.00139 .
10.    Lučiūnaitė A, McManus RM, Jankunec M, Rácz I, Dansokho C, Dalgėdienė I, et al. Soluble Aβ oligomers and protofibrils induce NLRP3 inflammasome activation in microglia. Journal of Neurochemistry. 2020; 155(6): 650-61. doi: 10.1111/jnc.14945
11.    Saland SK, Kabbaj M. Sex Differences in the Pharmacokinetics of Low-dose Ketamine in Plasma and Brain of Male and Female Rats. J Pharmacol Exp Ther. 2018; 367(3): 393-404. doi: 10.1124/jpet.118.251652 .
12.    Yang B, Ren Q, Ma M, Chen QX, Hashimoto K. Antidepressant Effects of (+)-MK-801 and (-)-MK-801 in the Social Defeat Stress Model. Int J Neuropsychopharmacol. 2016; 19(12). doi: 10.1093/ijnp/pyw080 .
13.    Hashimoto K. Ketamine's antidepressant action: beyond NMDA receptor inhibition. Expert Opin Ther Targets. 2016; 20(11): 1389-92. doi: 10.1080/14728222.2016.1238899 .
14.    Indu Sharma MK, Bharat Parashar, Amrita Kainth. Depression: An Overview. Asian Journal of Research in Pharmaceutical Sciences. 2014;4(1):28-31
15.    Meneses G, Gevorkian G, Florentino A, Bautista MA, Espinosa A, Acero G, et al. Intranasal delivery of dexamethasone efficiently controls LPS-induced murine neuroinflammation. Clin Exp Immunol. 2017;190(3):304-14. doi: 10.1111/cei.13018 .
16.    Georgiou P, Zanos P, Mou TM, An X, Gerhard DM, Dryanovski DI, et al. Experimenters' sex modulates mouse behaviors and neural responses to ketamine via corticotropin releasing factor. Nat Neurosci. 2022; 25(9): 1191-200. doi: 10.1038/s41593-022-01146-x,  
17.    Mangestuti Agil HL, Hadi Kuncoro, Burhan Ma’arif. Effect of Ethyl Acetate Fraction of Marsilea crenata Presl. Leaf Extract on Major Histocompatibility Complex Class II Expression in Microglial HMC3 Cell Lines. Research Journal of Pharmacy and Technology. 2021; 14(12): 6374-8. doi: 10.52711/0974-360X.2021.01102,  
18.    Hoogland IC, Houbolt C, van Westerloo DJ, van Gool WA, van de Beek D. Systemic inflammation and microglial activation: systematic review of animal experiments. J Neuroinflammation. 2015; 12: 114. doi: 10.1186/s12974-015-0332-6
19.    R. Shasmitha SSK. Dose dependent effect of Bacopa monnieri on Stress included Neural Degeneration in CA-1 and CA-3 Hippocampus Region of rat. Research Journal of Pharmacy and Technology. 2019; 12(5): 2353-5. doi: 10.5958/0974-360X.2019.00393.7  
20.    Malarkodi Velraj VR, S. Ramamoorthy, A. Vijayalakshmi, J Srikanth. Antidepressant-Like Effects of the Ethanolic Extract of Albizzia lebbeck (Linn) Leaves in Animal Models of Depression. Research Journal of Pharmacognosy and Phytochemistry. 2010; 2(1): 30-3.  
21.    Dantzer R, O'Connor JC, Freund GG, Johnson RW, Kelley KW. From inflammation to sickness and depression: when the immune system subjugates the brain. Nature reviews Neuroscience. 2008; 9: 46-56. doi: 10.1038/nrn2297 .
22.    Wang J, Goffer Y, Xu D, Tukey DS, Shamir DB, Eberle SE, et al. A single subanesthetic dose of ketamine relieves depression-like behaviors induced by neuropathic pain in rats. Anesthesiology. 2011; 115(4): 812-21. doi: 10.1097/ALN.0b013e31822f16ae.
23.    Subamalani S SA, Vijayaragavan R, Senthilkumar S, Madhan Kumar S, Makesh Raj LS, Kannan I. Effect of Acorus calamus Linn on histomorphometric changes in the CA1 and CA3 regions of Hippocampus in Wistar Albino rats. Research Journal of Pharmacy and Technology. 2019; 12(7): 3531-6. doi: 10.5958/0974-360X.2019.00601.2 .
24.    S. Gomathi RSS, M. Vijayabaskaran, C. Kannan, R. Sambathkumar. Pedalium murex Linn leaves against LPS-induced oxidative stress, anxiety and depression behavioural alterations in rats. Research Journal of Pharmacy and Technology. 2017; 10(5): 1333-8. doi: 10.5958/0974-360X.2017.00236.0.
25.    Alekseeva IV, Abramova AY, Kozlov AY, Koplik EV, Pertsov AS, Lyadov DA, et al. State of Stress-Marker Organs in Rats after a Single Exposure to Long-Term Stress and Treatment with Lipopolysaccharide. Bull Exp Biol Med. 2019; 167(5): 624-7. doi: 10.1007/s10517-019-04584-z.


Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags


Not Available