Author(s): Anita Puspa Widiyana, Sri Herlina


DOI: 10.52711/0974-360X.2024.00248   

Address: Anita Puspa Widiyana1*, Sri Herlina2
1Department of Pharmacy, Faculty of Medicine, Universitas Islam Malang, Lowokwaru 65144, Malang, Indonesia.
2Department of Medicine, Faculty of Medicine, Universitas Islam Malang, Lowokwaru 65144, Malang, Indonesia.
*Corresponding Author

Published In:   Volume - 17,      Issue - 4,     Year - 2024

Antimicrobial resistance causes a decrease in the effectiveness of drugs for infection therapy. CAAD can be a solution to predict solubility through chemical reactivity and interaction visibility type for new antimicrobial agents utilizing computers. The purpose of the research project was to estimate the combination of pinostrobin and chitosan's solubility and antibacterial activity. ChemBio Draw software was used to determine chemical reactivity. The solubility prediction was computed by the AutoDock Tool software. The antimicrobial activity was measured by the MOE software. Pyruvate kinase (PDB ID: 3T07), MRSA PBP2a (PDB ID: 4DKI), UPPS (PDB ID: 4H8E), and DHFR (PDB ID: 2W9S) were chosen as target proteins in the study. Pinostrobin had I, A, ?, d, and ? values higher than those of chitosan, except ?E, ?, and µ. The interaction visibility type and bond distance between pinostrobin and chitosan, such as two conventional hydrogens (2.16-2.23 Å) and three hydrophobic pi-sigma (3.10-3.91 Å). The free energy binding value of pinostrobin, which interacted with proteins including 3T07, 4DKI, 4H8E, and 2W9S, respectively, was -6.0109, -5.4356, -6.4202, and -6.5748 kcal/mol. Chitosan with the same proteins had -11.4987, -111.1761, -11.1157, and -11.0369 kcal/mol. Pinostrobin is more stable and has lower reactivity than chitosan. The process of pinostrobin and chitosan solubility in each other was significantly impacted by the hydrogen and hydrophobic pi-sigma bonds. The antimicrobial prediction of chitosan was higher than that of pinostrobin against all target proteins. This research was the basis for isolating pinostrobin and developing a drug delivery system combined with chitosan.

Cite this article:
Anita Puspa Widiyana, Sri Herlina. Computer-Aided Drug Design (CADD): Pinostrobin and Chitosan Combination as an Antimicrobial Agent. Research Journal of Pharmacy and Technology.2024; 17(4):1571-7. doi: 10.52711/0974-360X.2024.00248

Anita Puspa Widiyana, Sri Herlina. Computer-Aided Drug Design (CADD): Pinostrobin and Chitosan Combination as an Antimicrobial Agent. Research Journal of Pharmacy and Technology.2024; 17(4):1571-7. doi: 10.52711/0974-360X.2024.00248   Available on:

1.    Jukič M, Bren U. Machine Learning in Antibacterial Drug Design. Front Pharmacol. 2022; 13:1–11. doi: 10.3389/fphar.2022.864412.
2.    Vemula D, Jayasurya P, Sushmitha V, Kumar YN, Bhandari V. CADD, AI and ML in drug discovery: A comprehensive review. Eur J Pharm Sci. 2023; 18: 106324.
3.    Albasri OWA, Kumar PV, Rajagopal MS. Development of computational in silico model for nano lipid carrier formulation of curcumin. Molecules. 2023; 28(4): 1833.
4.    Lee JW, Maria-Solano MA, Vu TNL, Yoon S, Choi S. Big data and artificial intelligence (AI) methodologies for computer-aided drug design (CADD). Biochem Soc Trans. 2022; 50(1): 241–52.
5.    Gurung AB, Ali MA, Lee J, Farah MA, Al-Anazi KM. An Updated Review of Computer-Aided Drug Design and Its Application to COVID-19. Biomed Res Int. 2021.
6.    Azad I, Khan T, Ahmad N, Khan AR, Akhter Y. Updates on drug designing approach through computational strategies: A review. Futur Sci OA. 2023;9(5).
7.    Patel NK, Jaiswal G, Bhutani KK. A review on biological sources, chemistry and pharmacological activities of pinostrobin.Natural Product Research. 2015. doi.10.1080/14786419.2015.1107556
8.    Shamsudin NF, Ahmed QU, Mahmood S, Shah SAA, Khatib A, Mukhtar S, et al. Antibacterial effects of flavonoids and Their Structure-Activity Relationship Study: A Comparative Interpretation. Molecules. 2022; 27(4): 1149.
9.    Suryadi A,Siswodihardjo S, Widiandani T, Widyowati R. Structure Modifications of Pinostrobin from Temu Kunci (Boesenbergia pandurata ROXB. SCHLECHT) and Their Analgesic Activity Based on in Silico Studies. Research Journal of Pharmacy and Technology. 2021; 14(4): 2089-4. doi: 10.52711/0974-360X.2021.00370
10.    Agustin SL, Widiandani T, Hardjono S,Purwanto BT. QSAR of Acyl pinostrobin derivatives as Anti-breast cancer against HER-2 receptor and their ADMET properties based on in silico Study. Research Journal of Pharmacy and Technology. 2022; 15(10): 4641-8. doi: 10.52711/0974-360X.2022.00779
11.    Wiyono L, Edina BC, Rahmawanti RA,Azizah NN, Paramita RI,Purwaningsih EH, Fadilah F. Isolation, Synthesis Nanoparticle, and In-vitro test of Pinostrobin from Kaempferia pandurata on MCF-7 and MDAMB-231 Breast Cancer Cell. Research J. Pharm. and Tech 2020; 13(6): 2797-2801. doi: 10.5958/0974-360X.2020.00497.7
12.    González AS, Soto Tellini VH, Benjumea Gutiérrez DM. Study of the dermal anti-inflammatory, antioxidant, and analgesic activity of pinostrobin. Heliyon. 2022; 8(9): e14013.
13.    YadavVB, YadavAV. Applications of Chitosan in Designing of Different Microspheres. Research J. Pharm. and Tech. 2009; 2(1): 34-47.
14.    Abd El-Hack ME, El-Saadony MT, Shafi ME, Zabermawi NM, Arif M, Batiha GE, et al. Antimicrobial and antioxidant properties of chitosan and its derivatives and their applications: A review. Int J Biol Macromol. 2020; 164: 2726–44.
15.    Nagar M, YadavAV. Venlafaxine Extended Release Tablets: A Chitosan Based Once a Day Technology. Research J. Pharm. and Tech. 2009; 2(4): 803-11.
16.    Kurakula M, N. NR. Prospection of recent chitosan biomedical trends: Evidence from patent analysis (2009–2020). Int J Biol Macromol. 2020; 165: 1924–38.
17.    Cheung RCF, Ng TB, Wong JH, Chan WY. Chitosan: An update on potential biomedical and pharmaceutical applications.Marine Drugs. 2015; 13: 5156–86 p. doi:10.3390/md13085156
18.    Antony R, Arun T, Manickam STD. A review on applications of chitosan-based Schiff bases. Int J Biol Macromol. 2019; 129: 615–33.
19.    Pavithra R, Hemalatha K, Girija K. Eco-Friendly Synthesis, Characterization, Docking and Anti-Bacterial activity of Mannich Base Substituted Benzimidazoles. Research J. Pharm. and Tech. 2017; 10(10): 3346-52. doi: 10.5958/0974-360X.2017.00595.9
20.    Jubeh B, Breijyeh Z, Karaman R. Resistance of gram-positive bacteria to current antibacterial agents and overcoming approaches. Molecules. 2020; 25(12): 1–22. doi:10.3390/molecules25122888
21.    Murray CJ, Ikuta KS, Sharara F, Swetschinski L, Robles Aguilar G, Gray A, et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022; 399(10325): 629–55.
22.    Miklasińska-Majdanik M, Kępa M, Wojtyczka RD, Idzik D, Wąsik TJ. Phenolic compounds diminish antibiotic resistance of staphylococcus aureus clinical strains. Int J Environ Res Public Health. 2018; 15(10): 2321.
23.    Kwiecinski JM, Horswill AR. Staphylococcus aureus bloodstream infections: pathogenesis and regulatory mechanisms. Curr Opin Microbiol. 2020; 53: 51–60. doi:10.1016/j.mib.2020.02.005
24.    Ekawati ER, Windarmanto, Wahyuningsih SPA. Study of Lime Peel Flavonoid as effectively Antibacterial against Methicillin-Resistant Staphylococcus aureus. Research Journal of Pharmacy and Technology. 2022; 15(7): 3002-8. doi: 10.52711/0974-360X.2022.00501
25.    Widiyana AP, Putra GS, Muchlashi LA, Sulistyowaty MI, Budiati T. Design and molecular docking studies of quinazoline derivatives as antiproliferation. JFKI. 2016; 3(1): 32–8.
26.    Widiyana AP. Desain Komputasi dari Turunan senyawa kuinazolin-4(3H)-on sebagai inhibitor siklooksigenase-2 (COX-2). Jfsp. 2021; 7(2): 2579–4558.  
27.    Islam MJ, Zannat A, Kumer A, Sarker N, Paul S. The prediction and theoretical study for chemical reactivity, thermophysical and biological activity of morpholinium nitrate and nitrite ionic liquid crystals: A DFT study. Adv J Chem A. 2019; 2(4): 316–26. doi: 10.33945/SAMI/AJCA.2019.4.5
28.    Adole VA, Bukane AR,Waghchaure RH, Shinde RS,Jagdale BS. Computational Study on Molecular Structure, UV-Visible and Vibrational Spectra and Frontier Molecular Orbital Analysis of (E)-7-((2-Chloroquinolin-3-yl)methylene)-1,2,6,7-tetrahydro-8H-indeno[5,4-b]furan-8-one. Research Journal of Pharmacy and Technology. 2022; 15(3):1101-8. doi: 10.52711/ 0974-360X.2022.00184
29.    Gupta MK. Synthesis, Antimicrobial Evaluation and Docking Studies of Novel 4-acetamido-3-aminobenzoic acid derivatives As Microbial Neuraminidase Inhibitors. Research J. Pharm. and Tech 2019; 12(1): 303-13. doi: 10.5958/0974-360X.2019.00056.8
30.    Girija K, Jamuna B. Design and Synthesis of Some Novel Schiff’s Base Aryl Imidazole Derivatives, Characterization, Docking and Study of their Anti-Microbial Activity. Research J. Pharm. and Tech. 2015; 8(4): 407-15. doi: 10.5958/0974-360X.2015.00069.4
31.    Nusantoro YR, Fadlan A. Theeffect of energy minimization on the molecular docking of acetone-based oxindole. 2021; 6(1): 69–77.
32.    Informatics P. Chem3D v20.1 User Guide. 1998-2021.
33.    Frimayanti N, Lukman A, Nathania L, Program S, Farmasi F, Farmasi S, et al. Studi molecular docking senyawa 1,5-benzothiazepine sebagai inhibitor dengue DEN-2 NS2B/NS3 serine protease. Chempublish J. 2021; 6(1): 54–62.
34.    Abdellattif MH, Elkamhawy A, Hagar M, Hadda T Ben, Shehab WS, Mansy W, et al. Novel saccharin analogs as promising antibacterial and anticancer agents: synthesis, DFT, POM analysis, molecular docking, molecular dynamic simulations, and cell-based assay. Front Pharmacol. 2022; 13: 1–26. doi: 10.3389/fphar.2022.958379
35.    Kimber P, Plasser F. Energy Component Analysis for Electronically Excited States of Molecules: Why the Lowest Excited State Is Not Always the HOMO/LUMO Transition. J Chem Theory Comput. 2023; 19: 2340−52.
36.    Miar M, Shiroudi A, Pourshamsian K, Oliaey AR, Hatamjafari F. Theoretical investigations on the HOMO–LUMO gap and global reactivity descriptor studies, natural bond orbital, and nucleus-independent chemical shifts analyses of 3-phenylbenzo[d]thiazole-2(3H)-imine and its para-substituted derivatives: Solvent and subs. J Chem Res. 2021; 45(1–2): 147–58. doi.10.1177/1747519820932091
37.    Ikpi ME, Abeng FE. Theoretical study on the corrosion inhibitor potential of moxifloxacin for API 5L X-52 steel in acidic environment. IOP Conf Ser Earth Environ Sci. 2018; 173(1). doi :10.1088/1755-1315/173/1/012018
38.    Gupta M, Sharma R, Kumar A. Docking techniques in pharmacology: How much promising?. Comput Biol Chem. 2018;76:210–7.
39.    Jin X, Awale M, Zasso M, Kostro D, Patiny L, Reymond JL. PDB-Explorer: A web-based interactive map of the protein data bank in shape space. BMC Bioinformatics. 2015; 16(1): 1–15.
40.    Al-Rajhi AMH, Bakri MM, Ganash M, Salama HM, Selim S, Abdelghany TM. Molecular Interaction Studies and Phytochemical Characterization of Mentha pulegium L. Constituents with Multiple Biological Utilities as Antioxidant, Antimicrobial, Anticancer and Anti-Hemolytic Agents. Molecules. 2022; 27(15): 4824.
41.    Abdellattif MH, Shahbaaz M, Arief MMH, Hussien MA. Oxazinethione derivatives as a precursor to pyrazolone and pyrimidine derivatives: Synthesis, biological activities, molecular modeling, adme, and molecular dynamics studies. Molecules. 2021;26(18).
42.    Abdellattif MH, Shahbaaz M, Arief MMH, Hussien MA. Oxazinethione derivatives as a precursor to pyrazolone and pyrimidine derivatives: Synthesis, biological activities, molecular modeling, adme, and molecular dynamics studies. Molecules. 2021; 26(18).

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

56th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Recent Articles


Not Available