Author(s): Widya D. Aryati, Afifah Z. Tifani, Silmy K. Putri, Muhammad F. D. Harahap, Norman E. Ramadhan, Hayun Hayun


DOI: 10.52711/0974-360X.2024.00243   

Address: Widya D. Aryati, Afifah Z. Tifani, Silmy K. Putri, Muhammad F. D. Harahap, Norman E. Ramadhan, Hayun Hayun*
Pharmaceutical and Medicinal Chemistry Laboratory, Faculty of Pharmacy, Universitas Indonesia, Depok, 16424, West Java, Indonesia.
*Corresponding Author

Published In:   Volume - 17,      Issue - 4,     Year - 2024

A series of bis-Mannich base derivatives of curcumin pyrazole (CP) have been synthesized and investigated for the potential of its anti-inflammatory activity in-vitro and in-silico. The synthesis was performed by aminomethylation of CP obtained from the cyclization of the 1,3-diketone chain of curcumin with hydrazine hydrate. The potential as an anti-inflammatory was accessed by the protein denaturation inhibition technique, and an in-silico study was performed against cyclooxygenase-1 and cyclooxygenase-2 via molecular docking. All the compounds showed better protein denaturation inhibitory activity than diclofenac sodium, curcumin, and CP used as standard and comparable compounds. Compound 2a exhibited the best active compound. The docking study found that the binding energy to COX-2 of all the compounds was lower than that of COX-1. The selectivity score (S) indicated that the compounds were very selective against COX-2. So, all the compounds possess high potential as anti-inflammatory agents, and further study is necessary to identify these compounds' safety and activity in- vivo.

Cite this article:
Widya D. Aryati, Afifah Z. Tifani, Silmy K. Putri, Muhammad F. D. Harahap, Norman E. Ramadhan, Hayun Hayun. Bis-Mannich Base derivatives of Curcumin Pyrazole: Synthesis and its Anti-inflammatory Study In-vitro and In-Silico. Research Journal of Pharmacy and Technology.2024; 17(4):1537-3. doi: 10.52711/0974-360X.2024.00243

Widya D. Aryati, Afifah Z. Tifani, Silmy K. Putri, Muhammad F. D. Harahap, Norman E. Ramadhan, Hayun Hayun. Bis-Mannich Base derivatives of Curcumin Pyrazole: Synthesis and its Anti-inflammatory Study In-vitro and In-Silico. Research Journal of Pharmacy and Technology.2024; 17(4):1537-3. doi: 10.52711/0974-360X.2024.00243   Available on:

1.    Ahmed AU. An overview of inflammation: Mechanism and consequences. Frontiers of Biology in China. 2011; 6(4): 274–281. doi:10.1007/s11515-011-1123-9
2.    Yerragunta V. Saba A. Sadia A. Begam A. Fatima SK. Nausheen H. E. Reddy ES. Evaluation of In-vitro Anti-Inflammatory activity of Petroleum Ether Extract of Butea monosperma Flowers. Research Journal of Pharmacy and Technology. 2016; 9(6): 755-758. doi: 10.5958/0974-360X.2016.00143.8
3.    Pahwa R. Goyal A. Jialal I. Chronic Inflammation. Stat Pearls Publishing-NCBI Bookshelf. 2022. available on
4.    Joseph J. Perumal P. Francis P. Synthesis and Anti-inflammatory Screening of Various Benzimidazole Derivatives. Research Journal of Pharmacy and Technology. 2016;  9(9): 1329-1329. doi: 10.5958/0974-360X.2016.00253.5
5.    Chen L. Deng H. Cui H. Fang J. Zuo Z. Deng J. et al.  Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. 2018; 9(6): 7204–7218. doi: 10.18632/oncotarget.23208
6.    Ajmone-Cat MA. Bernardo A. Greco A. Minghetti L. Non-Steroidal anti-inflammatory drugs and brain inflammation: Effects on microglial functions. Pharmaceuticals. 2010; 3: 1949-1964. doi: 10.3390/ph3061949
7.    Wongrakpanich S. Wongrakpanich A. Melhado K. Rangaswami J. A comprehensive review of non-steroidal anti-inflammatory drug use in the elderly. Aging and Disease. 2018; 9(1): 143–150. doi: 10.14336/AD.2017.0306
8.    Pavani P. Naveena E. Subhashini P. Srikanth S. Naik KT. Babu MK. A Review on Non-Steroidal Anti-Inflammatory Drugs Induced Kidney Diseases. Research Journal of Pharmacology and Pharmacodynamics.2022; 14(4): 268-2. doi: 10.52711/2321-5836.2022.00046
9.    Thejeswari Y. Kumar SR. Amelioration and Affirmation for the Assessment of Curcumin in API and Ayurvedic Herbal Formulation Haridra Capsule by UFLC Discrete Method. Research Journal of Pharmacy and Technology. 2013; 6(9): 1051-1057.
10.    Bharskar G. Mankar S., Siddheshwar S. Analytical Methods for Estimation of Curcumin in Bulk, Pharmaceutical Formulation and in Biological Samples. Asian Journal of Pharmaceutical Analysis. 2022; 12(2):142-8. doi: 10.52711/2231-5675.2022.00025
11.    Tapia E. Sánchez-Lozada LG. García-Niño WR. García E. Cerecedo A. García-Arroyo FE. et al. Curcumin prevents maleate-induced nephrotoxicity: Relation to hemodynamic alterations, oxidative stress, mitochondrial oxygen consumption and activity of respiratory complex. Free Radical Research. 2014; 48(11): 1342–1354.
12.    Aggarwal BB Harikumar KB. Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune, and neoplastic diseases.  International Journal of Biochemistry & Cell Biology. 2008; 41(1): 40-59. doi: 10.1016/j.biocel.2008.06.010
13.    Saha S. Roy A. Bahadur S. Choudhury A. Bioenhamcement of Curcumin by Dual approach. Research Journal of Pharmacy and Technology. 2016; 9(8):1059-1063. doi: 10.5958/0974-360X.2016.00200.6
14.    Claramunt RM. Bouissane L. Cabildo MP. Cornago MP. Elguero J. Radziwon A. et al. Synthesis and biological evaluation of curcuminoid pyrazoles as new therapeutic agents in inflammatory bowel disease: Effect on matrix metalloproteinases. Bioorganic and Medicinal Chemistry. 2009; 17(3): 1290–1296. doi: 10.1016/j.bmc.2008.12.029
15.    Narlawar R. Pickhardt M. Leuchtenberger S. Baumann K. Krause S. Dyrks T. et al. Curcumin-derived pyrazoles and isoxazoles: Swiss army knives or blunt tools for Alzheimer’s disease? ChemMedChem, 2008; 3(1): 165–172. doi: 10.1002/cmdc.200700218
16.    Ahsan N. Mishra S. Jain MK. Surolia A. Gupta S. Curcumin Pyrazole and its derivative (N-(3-Nitrophenylpyrazole) Curcumin inhibit aggregation, disrupt fibrils and modulate toxicity of Wild type and Mutant. Scientific Report. 2015; 5: 9862. doi: 10.1038/srep09862
17.    Untung J. Iskandarsyah I. Hayun H. 2-[(2,6-Dimethylmorpholin-4-yl) methyl]-4-[(E)-2-{3-[(E)-2-{3-[(2,6-dimethylmorpholin-4-yl) methyl]-4-hydroxy-5-methoxy-phenyl}ethenyl]-1H-pyrazol-5-yl}ethenyl]-6-methoxyphenol. MolBank. 2017; M949. doi: 10.3390/M949
18.    Lee DW. Park JH. Yoon SS. Synthesis and biological evaluation of curcumin analogs as antiplatelet inhibitor. Bulletin of the Korean Chemical Society. 2014; 35(5): 1537-1540. doi: 10.5012/bkcs.2014.35.5.1537
19.    Yadav AR. Mohite SK. Screening of In-vitro anti-inflammatory and Antifungal assay of Psidium guajava Leaf Extracts. Research Journal of Topical and Cosmetic Science. 2020; 11(2):62-64. doi: 10.5958/2321-5844.2020.00011.4
20.    Sari IP. Hariyanti H. Yanuar A. Hayun H. New decahydroacridine-1,8-diones derived from 3-aminocyclohex-2-en-1-one: Synthesis, characterization, antioxidant, in-vitro, and in-silico anti-inflammatory activity. Rasayan Journal of Chemistry. 2022; 15(2): 1241-1248. doi: 10.31788/RJC.1526775
21.    Vidyasabbani. Ramesh A. Snehalatha. Rahul B. Sriharitha. Sanjayvarma. Aparna. In- Vitro and in-Vivo Anti-Inflammatory Activities of Salvia hispanica and Linum usitatissium Seeds in Swiss Albino Rats. Research Journal of Pharmacy and Technology. 2015; 8(10): 1438-1444. doi: 10.5958/0974-360X.2015.00258.9
22.    Aldisa O. Azminah A. Erlina L. Hayun H. Yanuar A. Virtual screening of Indonesian herbal database to find sirtuin 1 activators using the docking method. Asian Journal of Pharmacy and Clinical Research. 2017; 10(Suppl 5): 158-162. doi: 10.22159/ajpcr.2017.v10s5.23121
23.    Selinsky BS. Gupta K. Sharkey CT. Loll PJ. Structural analysis of NSAID binding by prostaglandin H2 synthase: Time-dependent and time-independent inhibitors elicit identical enzyme conformations. Biochemistry. 2001; 40(17): 5172–5180. doi: 10.1021/bi010045s
24.    Orlando BJ. Lucido MJ. Malkowski MG. The structure of ibuprofen bound to cyclooxygenase 2. Journal of Structural Biology. 2015; 189(1): 62–66.  doi: 10.1016/j.jsb.2014.11.005
25.    Castro-Alvarez A. Costa AM. Vilarrasa J.  The performance of several docking programs at reproducing protein-macrolide-like crystal structures. Molecules. 2017; 22(1): 136. doi: 10.3390/molecules22010136
26.    Sujith KV. Rao JN. Shetty P. Kalluraya B. Regioselective reaction: synthesis and pharmacological study of Mannich bases containing ibuprofen moiety. European Journal of Medicinal Chemistry. 2009; 44(9): 3697-3702. doi: 10.1016/j.ejmech.2009.03.044
27.    Putri TN. Bachtiar A. Hayun H. Synthesis, Antioxidant, and Anti-inflammatory Activity of Morpholine Mannich base of AMACs ((2E, 6E)-2-({4-hydroxy-3[morpholin-4-yl-) methyl] phenyl} methylidene)-6-(phenylmethylidene) cyclohexan-1-one) and Its Analogs. Journal of Applied Pharmaceutical Sciences. 2018; 8(05): 019-025. doi: 10.7324/JAPS.2018.8503
28.    Silvestrini B. Guglielmotti A. Saso L. Cheng CY. Changes in concanavalin A-reactive proteins in inflammatory disorders. Clinical Chemistry. 1989; 35: 2207-2211. doi: 10.1093/clinchem/35.11.2207
29.    Saso L. Valentini G. Casini ML. Grippa E. Gatto MT. Leone MG. et al. Inhibition of heat-induced denaturation of albumin by nonsteroidal anti-inflammatory drugs (NSAIDs): Pharmacological Implications. Archives of Pharmaceutical Research. 2001; 24(2): 150-158. doi: 10.1007/BF02976483
30.    Grant NH. Album HE. Kryzanauskas C. Stabilization of serum albumin by anti-inflammatory drugs. Biochemistry and Pharmacology. 1970; 19(3): 715-22.
31.    Nargund LVG, Hariprasad V, Reddy GRN. Synthesis and anti-inflammatory activity of fluorinated phenyl styryl ketones and N-phenyl-5substituted aryl-3-p-(fluorophenyl) pyrazolins and pyrazoles. Journal of Pharmaceutical Sciences. 1992; 81(9):892-894.
32.    Jennifer Fernandes J. Revanasiddappa BC. Ishwarbhat K. Kumar MV. D’Souza L. Alva SS. Synthesis and in-Vitro Anti-Inflammatory Activity of Novel Pyrazoline Derivatives. Research Journal of Pharmacy and Technology. 2017; 10(6): 1679-1682. doi: 10.5958/0974-360X.2017.00296.7
33.    Anbarasi A. Vidhya R. Evaluation of In Vitro Anti- Inflammatory Activity of Tephrosia purpurea (Seed). Asian Journaal of Pharmaceutical Research. 2015; 5(2): 83-89. doi: 10.5958/2231-5691.2015.00012.X
34.    Silvestrini B. and Silvestrini M. Medical Implications of the Relationships among Protein Denaturation, Necrosis and Inflammation: An Intriguing Story. In (Ed.), Tendons - Trauma, Inflammation, Degeneration, and Treatment. Intech Open. 2022. doi: 10.5772/intechopen.108018
35.    Smyth LA. Collins I. Measuring and interpreting the selectivity of protein kinase inhibitors. Journal of Chemical Biology. 2009; 2(3): 131–151. doi: 10.1007/s12154-009-0023-9
36.    Dinata DI. Suryatno H. Musfiroh I. Suherman SE. Molecular Docking Simulation of Xanthorrhizol Compounds Derived from Temulawak as Anti-inflammatory on Enzymes COX-1 and COX-2. Indonesian Journal of Pharmaceutical Science and Technology. 2014; 1(1): 7–13. doi: 10.15416/ijpst.v1i1.7508
37.    Gouda AM. Ali HI. Almalki WH. Azim MA. Abourehab MAS. et al. Design, synthesis, and biological evaluation of some novel pyrrolizine derivatives as COX inhibitors with anti-inflammatory/analgesic activities and low ulcerogenic liability. Molecules. 2016; 21(2): 1–21. doi: 10.3390/molecules21020201
38.    Oniga SD. Pacureanu L. Stoica CI. Palage MD. Crăciun A. Rusu LR. Et al. COX inhibition profile and molecular docking studies of some 2-(Trimethoxyphenyl)-thiazoles. Molecules. 2017; 22(9): 1–15. doi: 10.3390/molecules22091507
39.    Miladiyah I. Jumina J. Sofia Mubarika Haryana SM. Mustofa M. In silico molecular docking of xanthone derivatives as cyclooxygenase-2 inhibitor agents. International Journal of Pharmacy and Pharmaceutical Sciences. 2017; 9(3):98-104. doi: 10.22159/ijpps.2017v9i3.15382

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

56th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Recent Articles


Not Available