Author(s): Hilya N. Imtihani, Rahmad A. Prasetya, Silfiana N. Permatasari

Email(s): hilya.imtihani@gmail.com

DOI: 10.52711/0974-360X.2024.00219   

Address: Hilya N. Imtihani1*, Rahmad A. Prasetya2, Silfiana N. Permatasari3
1Department of Technology Pharmacy, Surabaya Pharmacy Academy, Surabaya, Indonesia.
2Department of Clinical Pharmacy, Surabaya Pharmacy Academy, Surabaya, Indonesia.
3Department of Community Pharmacy, Surabaya Pharmacy Academy, Surabaya, Indonesia.
*Corresponding Author

Published In:   Volume - 17,      Issue - 3,     Year - 2024


ABSTRACT:
The present study aimed to improve the cholesterol reduction capability of poorly water-soluble chitosan from mangrove crab (Scylla serrata) shells, which is prepared into solid dispersion (SD). As an anti-cholesterol agent, chitosan requires solubility enhancement, which can be facilitated in the SD system. SD was made using a solvent evaporation technique employing two carriers: Hydroxypropyl Methylcellulose (HPMC) and Polyvinylpyrrolidone (PVP) K-30. To compare its effectivity, direct physical mixtures (PM) were used with the same carriers and varied into eight formulas: chitosan:PVP K-30 = SD1 (1:1), PM1 (1:1), SD2 (1:2), PM2 (1:2); chitosan:HPMC = SD3 (1:0.25), PM3 (1:0.25), SD4 (1:0.5), PM4 (1:0.5). These formulas were characterized using SEM, XRD, and FTIR prior to in vitro cholesterol-binding evaluation. SEM results indicate that SD formulas were relatively bigger in average particle surface area than PM, except for SD1. This particle size correlates with the in vitro test, showing that SD formulas have a slightly higher cholesterol-binding capacity than PM, and SD2 had the largest cholesterol reduction percentage, which was 29.57%. The XRD evaluation showed that particles are amorphous, which can facilitate the solubility process. Meanwhile, FTIR evaluation illustrated no reaction between the active ingredient of chitosan and the carrier in the SD system.


Cite this article:
Hilya N. Imtihani, Rahmad A. Prasetya, Silfiana N. Permatasari. Preparation of Solid Dispersion Systems for Natural Chitosan from Mangrove Crab (Scylla serrata) Shell: Physical Characterization and In Vitro Cholesterol-Binding Evaluation. Research Journal of Pharmacy and Technology. 2024; 17(3):1386-2. doi: 10.52711/0974-360X.2024.00219

Cite(Electronic):
Hilya N. Imtihani, Rahmad A. Prasetya, Silfiana N. Permatasari. Preparation of Solid Dispersion Systems for Natural Chitosan from Mangrove Crab (Scylla serrata) Shell: Physical Characterization and In Vitro Cholesterol-Binding Evaluation. Research Journal of Pharmacy and Technology. 2024; 17(3):1386-2. doi: 10.52711/0974-360X.2024.00219   Available on: https://rjptonline.org/AbstractView.aspx?PID=2024-17-3-70


REFERENCES:
1.    Muñoz I. Rodríguez C. Gillet DM. Moerschbacher B. Life cycle assessment of chitosan production in India and Europe. Int J Life Cycle Assess. 2017; 23(5): 1151–60. DOI: 10.1007/s11367-017-1290-2
2.    Santos VP. Marques NSS. Maia PCSV. de Lima MAB. Franco L de O, de Campos-Takaki GM. Seafood waste as attractive source of chitin and chitosan production and their applications. Int J Mol Sci. 2020; 21(12): 1–17.doi: 10.3390/ijms21124290
3.    Simoes A. Hidalgo C. Crustaceans (HS: 0306) Product Trade, Exporters and Importers. OEC - The Observatory of Economic Complexity. 2021. https://dblp.uni-trier.de/db/conf/aaai/visual2011.html#SimoesH11
4.    FAO. The State of World Fisheries and Aquaculture 2020. Rome: FAO; 2020. https://doi.org/10.4060/ca9229en
5.    Tokatlı K. Demirdöven A. Optimization of chitin and chitosan production from shrimp wastes and characterization. J Food Process Preserv. 2018; 42(2). https://doi.org/10.1111/jfpp.13494
6.    Hossain M. Iqbal A. Production and characterization of chitosans from shrimp waste. J Bangladesh Agric Univ. 2014; 12(1): 153.http://dx.doi.org/10.3329/jbau.v12i1.21405
7.    Handayani L. Zuhrayani R. Thaib A. Raihanum. Karakteristik Kimia Tepung Cangkang Kepiting.ProsidingSemdi-Unaya (Seminar Nasional Multi DisiplinIlmuUnaya). 2019; 112–116. http://jurnal.abulyatama.ac.id/index.php/semdiunaya
8.    Andi A. Noor A. Hasnah N. Usaha Biokonversi Kitin Asal Kepiting Rajungan Menjadi Kitosan. Mar Chim Acta. Jur Kim FMIPA, Univ Hasanudd. 2003; 4: 9–12. https://www.researchgate.net/publication/305983391
9.    Gopi S, Thomas S, Pius A. Handbook of Chitin and Chitosan Volume 1 : Preparation and Properties. Elsevier Inc. 2020. 1–497 p.
10.    Nikhil DS. Momin SA. Ashish AB. Usha S. Synthesis of Water Soluble Chitosan from Marine Waste and Its Application in Wet Wipes Formulations. Asian J. Research Chem. 2012; 5(12). 1419-1423.DOI: 10.5958/0974-4150
11.    Ylitalo R. Lehtinen S. Wuolijoki E. Ylitalo P. Lehtimäki T. Cholesterol-lowering properties and safety of chitosan. Arzneimittel-Forschung/Drug Res. 2002; 52(1): 1–7. DOI: 10.1055/s-0031-1299848
12.    Patti AM. Katsiki N. Nikolic D. Al-Rasadi K. Rizzo M. Nutraceuticals in Lipid-Lowering Treatment: A Narrative Review on the Role of Chitosan. Angiology. 2015; 66(5): 416–21.DOI: 10.1177/0003319714542999
13.    Moraru C. Mincea MM. Frandes M. Timar B. Ostafe V. A meta-analysis on randomised controlled clinical trials evaluating the effect of the dietary supplement chitosan on weight loss, lipid parameters and blood pressure. Medicina. 2018; 54(6). DOI: 10.3390/medicina54060109
14.    Umesh DS. Vivek I. Ramteke. Mathur VB. Kishore P. Bhusari. Enhancing the Bioavailability of Glipizide by Solid Dispersion. Research J. Pharma. Dosage Forms and Tech. 2010; 2(4): 307-311.DOI: 10.5958/0975-4377
15.    Benhabiles MS. Salah R. Lounici H. Drouiche N. Goosen MFA. Mameri N. Antibacterial activity of chitin, chitosan and its oligomers prepared from shrimp shell waste. Food Hydrocoll. 2012 ;29(1):48–56. https://doi.org/10.1016/j.foodhyd.2012.02.013
16.    Sari R. Setyawan D. Retnowati D. Pratiwi R. Development of Andrographolide-chitosan Solid Dispersion System: Physical Characterization, Solubility, and Dissolution Testing. Asian J Pharm. 2019; 13(1): 5–9. DOI: 10.22377/ajp.v13i01
17.    Nasional BS. Kitosan Syarat Mutu dan Pengolahan SNI 7949 BSN. Jakarta; 2013.
18.    SNI 01-2891-1992. Kadar Air Metode Oven dan Kadar Abu [Internet]. Bekasi; [cited 2021 Sep 2]. Available from: https://adoc.pub/a-kadar-air-sni-metode-oven-b-kadar-abu-sni-abu-total.html
19.    Heidari F. Razavi M. Bahrololoom ME. Tahriri M. Rasoulianboroujeni M. Koturi H. et al. Preparation of natural chitosan from shrimp shell with different deacetylation degree. Mater Res Innov. 2018; 22(3): 177–81. DOI: 10.1080/14328917.2016.1271591
20.    Lakshmi TS. Shamsunisha AM. Sirisha Y. Valarmathi C. Senthilkumar KL. Ezhilmuthu. Vasanthan A. Sumathy P. Enhancement of Dissolution Rate Studies on Solid Dispersion of Aceclofenac. Research J. Ph. Dos For and Tech. 2010; 2(1):107-110.DOI: 10.5958/0975-4377
21.    Nakkala BV. Sai K. Kasani HKG. Formulation and Evaluation of Simvastatin Solid Dispersions for Dissolution Rate Enhancement. Research J. Pharma. Dosage Forms and Tech. 2011; 3(4): 152-156.DOI: 10.5958/0975-4377
22.    Chokshi RJ. Zia H. Sandhu HK. Shah NH. Malick WA. Improving the dissolution rate of poorly water soluble drug by solid dispersion and solid solution - Pros and cons. Drug Deliv. 2007; 14(1): 33–45. DOI: 10.1080/10717540600640278
23.    Roekmono.Hadi H. Imtihani HN. Muhimmah LC. Yuwono RA. Wahyuono RA. Enhanced sensitivity of electrochemical biosensor on microfluidic paper based analytical device using zno/mwcnts nanocomposite. Int J Drug Deliv Technol. 2019; 9(2). DOI: 10.25258/ijddt.9.2.5
24.    Roekmono. Hadi H. Imtihani HN. Muhimmah LC. Yuwono RA. Wahyuono RA. Glucose and cholesterol sensing in blood plasma using zno-paper based microfluidics. Int J Drug Deliv Technol. 2018; 8(4). doi: 10.25258/ijddt.8.4.1
25.    Maidin AN. Produksi Kitosan Dari Limbah Cangkang Kepiting Rajungan (Portunidae) Secara Enzimatis Dan Aplikasinya Sebagai Penurun Kolesterol. Hasanuddin University; 2017.
26.    Adu JK. Amengor CDK. Kabiri N. Orman E. Abla S. Patamia G. et al. Validation of a Simple and Robust Liebermann – Burchard Colorimetric Method for the Assay of Cholesterol in Selected Milk Products in Ghana. 2019; 1–7. doi: 10.1155/2019/9045938
27.    Szynkowska MI. Microscopy Techniques| Scanning Electron Microscopy. Encyclopedia of Analytical Science (Second Edition), 2005
28.    Yanti R. Drastinawati. Yusminar. Sintesis Kitosan Dari Limbah Cangkang Kepiting Dengan Variasi Suhu Dan Waktu Pada Proses Deasetilasi. Jom FTEKNIK. 2018; 5(2): 1–7. https://jom.unri.ac.id/index.php/JOMFTEKNIK/article/view/22084
29.    Pratiwi R. Manfaat Kitin dan Kitosan bagi Kehidupan Manusia. Oseana. 2014;XXXIX(1):35–43. https://lib.ui.ac.id/detail?id=20436290&lokasi=lokal
30.    Dompeipen EJ. Kaimudin M. Dewa Balai Riset dan Standarisasi Industri Ambon RP, Cengkeh J, Merah Ambon B. Isolasi Kitin Dan Kitosan Dari Limbah Kulit Udang. Majalah BIAM. 2016; 12(1): 32–9. http://ejournal.kemenperin.go.id/bpbiam/article/view/2326/pdf_17
31.    Bajracharya R. Lee SH. Song JG. Kim M. Lee K. Han HK. Development of a ternary solid dispersion formulation of LW6 to improve the in vivo activity as a BCRP inhibitor: Preparation and in vitro/in vivo characterization. Pharmaceutics. 2019; 11(5).  https://doi.org/10.3390/pharmaceutics11050206
32.    Hilya NI, Silfiana NP, Fitria AT. Solid Dispersion Characteristics of Whiteleg Shrimp (Litopenaeus vannamei) Extracted Chitosan with HPMC and PVP K-30 as Anti-cholesterol Agents. Research Journal of Pharmacy and Technology. 2021; 14(7): 3559-5.DOI: 10.52711/0974-360X.2021.00616
33.    Patil AN. Shinkar DM. Saudagar RB. Review Article: Solubility Enhancement by Solid Dispersion. Asian J. Pharm. Tech. 2017; 7(2): 72-76.https://doi.org/10.22159/ijcpr.2017.v9i3.19583
34.    Nunes C. Mahendrasingam A. Suryanarayanan R. Quantification of crystallinity in substantially amorphous materials by synchrotron X-ray powder diffractometry. Pharm Res. 2005; 22(11): 1942–53.DOI: 10.1007/s11095-005-7626-9
35.    Szabó E. Galata DL. Vass P. Hirsch E. Csontos I. Marosi G. et al. Continuous formulation approaches of amorphous solid dispersions: Significance of powder flow properties and feeding performance. Pharmaceutics. 2019; 11(12). doi: 10.3390/pharmaceutics11120654
36.    Aaisha NS. Rukhsana AR. Anita SK. Indrajeet G. Dhananjay SS. Umair IS. Dissolution Enhancement of Ezetimibe by Solid Dispersion. Asian J. Research Chem. 2009; 2(3): 325-331.DOI: 10.5958/0974-4150
37.    Ashok AH. Prabhakar RJ. Improvement of Solubility and Dissolution Rate of Indomethacin by Solid Dispersion in Polyvinyl Pyrrolidone K30 and Poloxomer 188. Asian J. Pharm. Tech. 2012; 2(3): 116-122.DOI: 10.5958/2231–5713
38.    Divya B. Sabitha P. Reddy R. Kranthi KRM. Rao BN. An Approach to Enhance Solubility of Gatifloxacin by Solid Dispersion Tecnique. Asian J Res Pharm Sci. 2012; 2: 58–61. DOI: 10.52711/2231-5659
39.    Kranthi KRM. Narasimha RB, Ravindra RK. Study on Effect of Excipients in Enhancing the Solubility of Nateglinide by Solid Dispersions. Pharm Res. 2012;2:144–7. DOI: 10.5958/2231–5691
40.    Kolhe S. Chaudhari P. More D. Formulation Development of Solid Dispersion Prepared by Newer Approach: A Research. Pharm Res. 2013; 3: 172–80.DOI: 10.5958/2231–5691
41.    ReddyMKK. RaoBN. ReddyKR. Study on Effect of Excipients in Enhancing the Solubility of Nateglinide by Solid Dispersions . Asian J. Pharm. Tech. 2012;  2(1):  4-7.DOI: 10.5958/2231–5713
42.    Savjani KT. Gajjar AK. Savjani JK. Drug Solubility: Importance and Enhancement Techniques. ISRN Pharmaceutics 2012. DOI: 10.5402/2012/195727
43.    Nishihata T. Ishizaka M. Yokohama S. Martino AC. Gordon RE. Effects of Particle Size of Bulk Drug and food on the Bioavailability of U-78875 in Dogs. Drug Dev Ind Pharm. 2008; 19(20):2679–98.https://doi.org/10.3109/03639049309050171

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags


Not Available