Author(s):
Candra Irawan, Henny Rochaeni, Suhartini, Adya Risky Pradipta, Maman Sukiman, Imalia Dwi Putri, Rosalina
Email(s):
suhartinijournal@gmail.com
DOI:
10.52711/0974-360X.2024.00176
Address:
Candra Irawan1, Henny Rochaeni2, Suhartini2*, Adya Risky Pradipta2, Maman Sukiman3, Imalia Dwi Putri1, Rosalina3
1Department of Food Nanotechnology, Politeknik AKA Bogor, Jalan Pangeran Sogiri, Tanah Baru, Bogor 16154, Indonesia.
2Department of Chemical Analysis, Politeknik AKA Bogor, Jalan Pangeran Sogiri, Tanah Baru, Bogor 16154, Indonesia.
3Department of Industrial Waste Treatment, Politeknik AKA Bogor, Jalan Pangeran Sogiri, Tanah Baru, Bogor 16154, Indonesia.
*Corresponding Author
Published In:
Volume - 17,
Issue - 3,
Year - 2024
ABSTRACT:
Research to find antioxidants and anti-gout has been done using black betel leaf. The sample was extracted at room temperature for 30 minutes using the Ultrasound-Assisted Extraction (UAE) method, and a yield of 8.47% was obtained. Phytochemical screening was carried out on the ethanol extract of black betel leaves and showed the presence of secondary metabolite compounds consisting of alkaloids, phenolics, saponins, tannins, and steroid glycosides, with a total phenolic content of 758,534±0.003mg GAE per gram of sample. Antioxidant activity analysis was carried out using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) and Ferric Reducing Antioxidant Power (FRAP) methods, which showed IC50 and EC50 values of 115.562±0.14mg/L and 119.273±0.385 mg/L, respectively. The antioxidant activity of black betel leaf extract is in the medium category (100–150 mg/L). The anti-gout activity test was carried out using allopurinol as a control, which showed the ability of black betel leaf extract to reduce uric acid up to 14.48±0.01%. The ability of black betel leaf extract as an anti-uric acid is five times better than allopurinol, which is commonly used as a gout drug. The research results obtained opened up the opportunity to find a natural medicine for gout.
Cite this article:
Candra Irawan, Henny Rochaeni, Suhartini, Adya Risky Pradipta, Maman Sukiman, Imalia Dwi Putri, Rosalina. Total Phenolic content and Potential of Black Betel Leaf (Piper betle L.var Nigra) Extract as an Antioxidant and Anti-Gout. Research Journal of Pharmacy and Technology. 2024; 17(3):1128-4. doi: 10.52711/0974-360X.2024.00176
Cite(Electronic):
Candra Irawan, Henny Rochaeni, Suhartini, Adya Risky Pradipta, Maman Sukiman, Imalia Dwi Putri, Rosalina. Total Phenolic content and Potential of Black Betel Leaf (Piper betle L.var Nigra) Extract as an Antioxidant and Anti-Gout. Research Journal of Pharmacy and Technology. 2024; 17(3):1128-4. doi: 10.52711/0974-360X.2024.00176 Available on: https://rjptonline.org/AbstractView.aspx?PID=2024-17-3-27
REFERENCES:
1. Hay CA, Prior JA, Belcher J, Mallen CD, Roddy E. Mortality in Patients With Gout Treated With Allopurinol: A Systematic Review and Meta-Analysis. Arthritis Care Res. 2021;73(7):1049-1054. doi:10.1002/acr.24205
2. Dehlin M, Jacobsson L, Roddy E. Global epidemiology of gout: prevalence, incidence, treatment patterns and risk factors. Nat Rev Rheumatol. 2020;16(7):380-390. doi:10.1038/s41584-020-0441-1
3. Wu N, Xia J, Chen S, et al. Serum uric acid and risk of incident chronic kidney disease: a national cohort study and updated meta-analysis. Nutr Metab. 2021;18(1). doi:10.1186/s12986-021-00618-4
4. Georgel PT, Georgel P. Where Epigenetics Meets Food Intake: Their Interaction in the Development/Severity of Gout and Therapeutic Perspectives. Front Immunol. 2021;12. doi:10.3389/fimmu.2021.752359
5. K M, Krishnan RS, Rahini P. A Review on Gouty Arthritis. Res J Pharm Tech. 2019;12(11):5583-5588. doi:10.5958/0974-360X.2019.00967.3
6. Tumova S, Shi Y, Carr IM, Williamson G. Effects of quercetin and metabolites on uric acid biosynthesis and consequences for gene expression in the endothelium. Free Radic Biol Med. 2021;162:191-201. doi:10.1016/j.freeradbiomed.2020.10.017
7. Chib A, Gupta N, Bhat A, Anjum N, Yadav G. Role of antioxidants in food. Int J Chem Stud. 2020;8(1):2354-2361. doi:10.22271/chemi.2020.v8.i1aj.8621
8. Xu X, Liu A, Hu S, et al. Synthetic phenolic antioxidants: Metabolism, hazards and mechanism of action. Food Chem. 2021;353. doi:10.1016/j.foodchem.2021.129488
9. Mizobuchi M, Ishidoh K, Kamemura N. A comparison of cell death mechanisms of antioxidants, butylated hydroxyanisole and butylated hydroxytoluene. Drug Chem Toxicol. 2022;45(4):1899-1906. doi:10.1080/01480545.2021.1894701
10. Elkordy AA, Haj-Ahmad RR, Awaad AS, Zaki RM. An overview on natural product drug formulations from conventional medicines to nanomedicines: Past, present and future. J Drug Deliv Sci Technol. 2021;63. doi:10.1016/j.jddst.2021.102459
11. Arsy Al Khairy Siregar Universitas Muhammadiyah Kalimantan Timur K, Muhammadiyah Kalimantan Timur U. Bioactivity and Phytochemical Compound Test on Black Betel Leaves (Piper Betle Var. Nigra) A Literature Review The Biofilm Inhibition and Eradication Activity of Curcumin Againts Polymicrobial Biofilm View Project Hasyrul Hamzah Chaerul Fadly Mochtar Luth. https://www.researchgate.net/publication/357899808
12. Junairiah Z, Istighfari N, Izdihar FN, Manuhara YSW. Callus induction of leaf explant Piper betle L. Var Nigra with combination of plant growth regulators indole-3-acetic acid (IAA), benzyl amino purin (BAP) and kinetin. In: In 6th International Conference and Workshops on Basic and Applied Sciences. ; 2017:020028.
13. Irawan C, Elya B, Hanafi M, Saputri FC. Application of ultrasound-assisted extraction on the stem bark of rhinachantus nasutus (L.) Kurz, total phenolic, and its potential as antioxidant and inhibitor of alpha-glucosidase enzyme activity. Pharmacogn J. 2021;13(5):1297-1303. doi:10.5530/pj.2021.13.164
14. Khan AM, Qureshi RA, Ullah F, et al. Phytochemical analysis of selected medicinal plants of Margalla hills and surroundings. J Med Plant Res. 2011;5(25):6017-6023. doi:10.5897/JMPR11.869
15. Ayoola GA, Coker H, Adesegun SA, et al. Phytochemical Screening and Antioxidant Activities of Some Selected Medicinal Plants Used for Malaria Therapy in Southwestern Nigeria. Trop J Pharm Res. 2008;7(3). http://www.tjpr.org
16. Masood A. Distribution of Secondary Metabolites in Plants of Quetta-Balochistan.
17. Irawan C, Utami A, Styani E, et al. Potential of ethanolic extract from ripe Musa balbisiana colla fruit using ultrasound-assisted extraction as an antioxidant and anti-gout. Pharmacogn J. 2021;13(6):1332-1340. doi:10.5530/PJ.2021.13.168
18. Putri ID, Irawan C, Sukiman M, et al. Application of Ultrasound Assisted Extraction on Ripe Banana Peels (Musa balbisiana Colla) and its Potential as an Antioxidant and Antigout Agent. Res J Pharm Technol. 2022;15. doi:10.52711/0974-360X.2022.00127
19. Kumar K, Srivastav S, Singh V. Ultrasonics - Sonochemistry Ultrasound assisted extraction ( UAE ) of bioactive compounds from fruit and vegetable processing by-products : A review. Ultrason - Sonochemistry. 2021;70(May 2020):105325. doi:10.1016/j.ultsonch.2020.105325
20. Medina-torres N, Ayora-talavera T, Espinosa-andrews H. Ultrasound Assisted Extraction for the Recovery of Phenolic Compounds from Vegetable Sources. Published online 2017. doi:10.3390/agronomy7030047
21. Minh T, Nguyen C, Gavahian M, Tsai P jen. Effects of ultrasound-assisted extraction ( UAE ), high voltage electric field ( HVEF ), high pressure processing ( HPP ), and combined methods ( HVEF + UAE and HPP + UAE ) on Gac leaves extraction. LWT. 2021;143(November 2020):111131. doi:10.1016/j.lwt.2021.111131
22. Priyanka S, Kirubagaran R, Leema JTM. Optimization of ultrasound-assisted extraction (UAE) of zeaxanthin from marine microalgae Dunaliella tertiolecta (NIOT 141) using response surface methodology. Res J Pharm Tech. 2021;14(3):1729-1735. doi:10.5958/0974-360X.2021.00308.5
23. Rangasamy P, Hansiya VS, Maheswari PU, Suman T, Geetha N. Phytochemical Analysis and Evaluation of In vitro Antioxidant and Anti-urolithiatic Potential of various fractions of Clitoria ternatea L. Blue Flowered Leaves. Asian J Pharm Ana. 2019;9(2):67-76. doi:10.5958/2231-5675.2019.00014.0
24. Pérez-Gregorio R. Phenolic compounds and functional beverages. Beverages. 2021;7(4). doi:10.3390/beverages7040071
25. Wang SC, Chou IW, Hung MC. Natural tannins as anti-SARS-CoV-2 compounds. Int J Biol Sci. 2022;18(9):3818-3826. doi:10.7150/ijbs.74676
26. Aristri MA, Lubis MAR, Iswanto AH, et al. Bio-based polyurethane resins derived from tannin: Source, synthesis, characterisation, and application. Forests. 2021;12(11):1-23. doi:10.3390/f12111516
27. Yan Y, Li X, Zhang C, Lv L, Gao B, Li M. Research Progress on Antibacterial Activities and Mechanisms of Natural Alkaloids : A Review. Published online 2021.
28. Hussain H, Mamadalieva NZ, Ali I, et al. Trends in Food Science & Technology Fungal glycosides : Structure and biological function. Trends Food Sci Technol. 2021;110(December 2020):611-651. doi:10.1016/j.tifs.2021.02.029
29. Astuti SM, Sakinah A.M M, Andayani B.M R, Risch A. Determination of Saponin Compound from Anredera cordifolia (Ten) Steenis Plant (Binahong) to Potential Treatment for Several Diseases. J Agric Sci. 2011;3(4):224-232. doi:10.5539/jas.v3n4p224
30. Aulia MI, Sari RK, Nawawi DS, Dewi RT. Isolation and Identification of Antioxidant and α-glucosidase Inhibitor Compound from Prospective Extract of Acacia Bark from Indonesia. Res J Pharm Technol. 2022;15(9):3847-3. doi:10.52711/0974-360X.2022.00645
31. Carmona-hernandez JC, Taborda-ocampo G, González-correa CH. Folin-Ciocalteu Reaction Alternatives for Higher Polyphenol Quantitation in Colombian Passion Fruits. 2021;2021.
32. Tian W, Chen G, Gui Y, Zhang G, Li Y. Rapid quantification of total phenolics and ferulic acid in whole wheat using UV – Vis spectrophotometry. Food Control. 2020;(June):107691. doi:10.1016/j.foodcont.2020.107691
33. Platzer M, Kiese S, Herfellner T, Schweiggert-weisz U. How Does the Phenol Structure Influence the Results of the Folin-Ciocalteu Assay ? Published online 2021:1-13.
34. Jaiswal SG, Patel M, Saxena DK, Naik SN. Antioxidant Properties of Piper Betel ( L ) Leaf Extracts from Six Different Geographical Domain of India. J Bioresour Eng Technol. 2014;2(2):12-20.
35. Irawan C, Khodijah E, Nurhayati L, Susanti D, Rahmatia L. Optimization of Ultrasound-Assisted Extraction in Limau Peels (Citrus amblycarpa), Antioxidant Activity and Its Potential as an Inhibitor for Xanthine Oxidase. Res J Pharm Technol. 2023;16(2):750-758. doi:10.52711/0974-360X.2023.00128
36. Saha D, Tamrakar A. Xenobiotics, Oxidative Stress, Free Radicals Vs. Antioxidants: Dance Of Death to Heaven’s Life. Asian J Res Pharm Sci. 2011;1(2):36-38.
37. K. S, R. M, G. S, V. B. Antioxidant Assays in Pharmacological Research. Asian J Pharm Tech. 2011;1(4):99-103.
38. Shah P. Comparative Study of DPPH , ABTS and FRAP Assays for Determination of Antioxidant Activity. 2016;(August).
39. Baschieri A, Amorati R. Methods to Determine Chain-Breaking Antioxidant Activity of Nanomaterials beyond DPPH • . A Review. Published online 2021:1-21.
40. Samal PK. Antioxidant activity of Strobilanthes asperrimus in albino rats. Asian J Pharm Res. 2013;3(2):71-74.
41. Munteanu IG, Apetrei C. Analytical Methods Used in Determining Antioxidant Activity : A Review. Published online 2021.
42. P S, Saradha M. Effects of Various Solvent on the Extraction of Antimicrobial, Antioxidant Phenolics from the Stem Bark of Decalepis hamiltonii Wight and Arn. Asian J Res Pharm Sci. 2016;6(2):129-134. doi:10.5958/2231-5659.2016.00018.7
43. Tristantini D, Ismawati A, Pradana BT, Gabriel J. Pengujian Aktivitas Antioksidan Menggunakan Metode DPPH pada Daun Tanjung ( Mimusops elengi L ). Published online 2016:1-7.
44. Badarinath A V, Rao KM, Madhu C, et al. A Review On In-Vitro Antioxidant Methods: Comparisions, Correlations and Considerations. Int J PharmTech Res. 2010;2(2):1276-1285. https://www.sid.ir/en/journal/ViewPaper.aspx?ID=383951
45. Bakar FIA, Bakar MFA, Rahmat A, Abdullah N. Anti-gout Potential of Malaysian Medicinal Plants. 2018;9(March). doi:10.3389/fphar.2018.00261
46. Saul S. Effects of Nyctanthes Arbor-Tristis and Colchicine on the Growth of Uric Acid Crystals. Asian J Pharm Ana. 2017;7(2):84-86. doi:10.5958/2231-5675.2017.00014.X
47. Furuhashi M. New insights into purine metabolism in metabolic diseases : role of xanthine oxidoreductase activity. 2022;(1). doi:10.1152/ajpendo.00378.2020
48. Stamp LK, Chapman PT. Best Practice & Research Clinical Rheumatology Allopurinol hypersensitivity : Pathogenesis and prevention. Best Pract Res Clin Rheumatol. 2020;(xxxx):101501. doi:10.1016/j.berh.2020.101501
49. Yang H chia, Anh P, Nguyen A, et al. Gout drugs use and risk of cancer: A case-control study. Jt Bone Spine. 2018;(December). doi:10.1016/j.jbspin.2018.01.008