Author(s):
Tarik Bouganssa, Adil Salbi, Samar Aarabi, Abdelali Lasfar, Abdellatif El Afia
Email(s):
tarik.bouganssa@gmail.com
DOI:
10.52711/0974-360X.2024.00133
Address:
Tarik Bouganssa1*, Adil Salbi2, Samar Aarabi3, Abdelali Lasfar2, Abdellatif El Afia1
1Laboratory Smart System LAB, ENSIAS Mohammed V University RABAT, Morocco.
2Laboratory LASTIMI, High School of Technology SALE Mohammed V University RABAT, Morocco.
3Team MEAT, High School of Technology SALE Mohammed V University Rabat, Morocco.
*Corresponding Author
Published In:
Volume - 17,
Issue - 2,
Year - 2024
ABSTRACT:
In this work, new ideas in the realm of picture identification and classification are developed and implemented on hardware. This entails putting new algorithms into practice, whether for color, texture, or shape identification for AI (Artificial Intelligence) and picture recognition applications. We concentrate on identifying edible mushrooms in the harvesting and food manufacturing processes. Our proposal for an embedded system based on a Raspberry-Pi4 type microcomputer employing a combination of hardware and software components has helped with the recognition and classification of items in the image. Our object recognition system is built on a novel neighborhood topology and a cutting-edge kernel function that enables the effective embedding of image processing-related characteristics. We tested the suggested CNN-based object recognition system using a variety of challenging settings, including diverse fungus species, uncontrolled environments, and varying backdrop and illumination conditions. The outcomes were superior to various state-of-the-art outcomes. On the other hand, our contribution relating to the dynamic mode integrates a CNN network to accurately encode the temporal information with an attention mask allowing us to focus on the characteristics of an edible mushroom according to the state of the art, and guarantee the robustness of the recognition. We implemented our algorithm on a Raspberry Pi400-based embedded system connected to a CMOS camera-type image sensor plus an HMI human-machine interface for the instantaneous display of results for the rapid classification of edible and inedible mushrooms.
Cite this article:
Tarik Bouganssa, Adil Salbi, Samar Aarabi, Abdelali Lasfar, Abdellatif El Afia. Recognition of Mushrooms and Classification of Edible and Toxic Families using Hardware Implementation of CNN Algorithms on an Embedded system. Research Journal of Pharmacy and Technology. 2024; 17(2):860-6. doi: 10.52711/0974-360X.2024.00133
Cite(Electronic):
Tarik Bouganssa, Adil Salbi, Samar Aarabi, Abdelali Lasfar, Abdellatif El Afia. Recognition of Mushrooms and Classification of Edible and Toxic Families using Hardware Implementation of CNN Algorithms on an Embedded system. Research Journal of Pharmacy and Technology. 2024; 17(2):860-6. doi: 10.52711/0974-360X.2024.00133 Available on: https://rjptonline.org/AbstractView.aspx?PID=2024-17-2-61
REFERENCES:
1. Samar Aarabi, Oussama Chauiyakh, Oumaima Ninich, Kamal Kettani, Aziz Et-tahir. Accumulation of heavy metals in fish and their impacts on human health: A Systematic Literature Review. Research Journal of Pharmacy and Technology 2023; 16(1): 209-4. doi: 10.52711/0974-360X.2023.00039.
2. Vélez, J.; Castiblanco-Camacho, P.J.; Tabak, M.A.; Chalmers, C.; Fergus, P.; Fieberg, J. Choosing an Appropriate Platform and Workflow for Processing Camera Trap Data using Artificial Intelligence. arXiv 2022, arXiv:2202.02283.
3. Jayamini Jayantha, Banukie Jayasuriya, Dilanthi Herath, Sugandhika Suresh, Dhammika Magana-Arachchi. Determination of Anti-tuberculosis activity of Psychotria sarmentosa, Aponogeton crispus and two species of Pleurotus mushrooms. Research Journal of Pharmacy and Technology. 2022; 15(3):954-0
4. Miao, Z., Liu, Z., Gaynor, K.M., Palmer, M.S., Yu, S.X., Getz, W.M. Iterative human and automated identification of wildlife images. Nature Mach. Intellig. 2021; 3(10): 885–895. https://doi.org/10.1038/s42256-021-00393-0 .
5. I. Bouganssa, M. Sbihi, and M. Zaim. Implementation of Edge Detection Digital Image Algorithm on a FPGA. MATEC Web of Conferences. 2016; 75: 3003.
6. I. Bouganssa, M. Sbihi, and M. Zaim. Implementation in an FPGA circuit of Edge detection algorithm based on the discrete wavelet transforms. Journal of Physics: Conf. Series. 2017; 870: 12016.
7. Rajkumari, Meenakshi Sharma, Sagarika Majhi, Madhu Verma, Iti Chauhan, Abhilasha Mittal. A Review on the significance of the Medicinal plant Gandoderma lucidum. Research Journal of Pharmacognosy and Phytochemistry. 2023; 15(1):46-52
8. X. Yu, J. Wang, R. Kays, P. A. Jansen, T. Wang, και T. Huang, Automated identification of animal species in camera trap images. EURASIP Journal on Image and Video Processing, τ. 2013, τχ. 1, σσ. 1–10, 2013.
9. A. Subasi, Practical Machine Learning for Data Analysis Using Python. Academic Press, 2020.
10. K.P. Indira, R. Rani Hemamalini, R. Indhumathi. Performance Evaluation of Gradient based PCNN for Fusion of Medical Images. Research J. Pharm. and Tech. 2016; 9(9):1483-1487
11. A. Gomez, G. Diez, A. Salazar, A. Diaz. Animal identification in low quality camera-trap images using very deep convolutional neural networks and confidence thresholds. International Symposium on Visual Computing. 2016: 747–756.
12. Oussama Chauiyakh, Aziz Et-Tahir, Badr Satrani, Mohamed Ghanmi, Sara Cherrad, Kamal Kettani, Abdelaziz Chaouch, Malika Tiskar. Chemical Composition and Evaluation of the Antibacterial and Antifungal Activities of Pre-Rif Teucrium polium Essential Oil. Research Journal of Pharmacy and Technology. 2022; 15(4): 1755-0. doi: 10.52711/0974-360X.2022.00294
13. Sriram, S., Vinayakumar, R., Sowmya, V., Alazab, M., & Soman, K. P. Multi-scale learning based malware variant detection using spatial pyramid pooling network. In IEEE INFOCOM. 2020 - IEEE conference on computer communications workshops (INFOCOM WKSHPS) (pp. 740–745). IEEE, http://dx.doi.org/10.1109/INFOCOMWKSHPS50562.2020.9162661 , URL: https://ieeexplore.ieee.org/document/9162661/.
14. Krizhevsky, A., Sutskever, I., Hinton, G. E. ImageNet Classification with deep convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger (Eds.), Communications of the ACM. 2017; 60(6): 84–90. http://dx.doi.org/10.1145/3065386 , URL: http://papers.nips.cc/paper/4824imagenet-classificationwith-deep-convolutional-neural-networks.pdf.
15. Simonyan, K., Zisserman, A. Very deep convolutional networks for largescale image recognition. arXiv preprint arXiv: 2014; 1409.1556 arXiv. URL: http://arxiv.org/abs/1409.1556.
16. Iandola, F. N., Han, S., Moskewicz, M. W., Ashraf, K., Dally, W. J., Keutzer, K. (2016). SqueezeNet: AlexNet-Level accuracy with 50x fewer parameters and <0.5mb model size. http://dx.doi.org/10.48550/ARXIV.1602.07360 , ArXiv.abs/1602.07360 URL: https://arxiv.org/abs/1602.07360 .
17. He, K., Zhang, X., Ren, S., Sun, J. (2016). Deep residual learning for image recognition. In 2016 IEEE conference on computer vision and pattern recognition (CVPR) (pp. 770–778). IEEE, http://dx.doi.org/10.1109/CVPR.2016.90, URL: http://ieeexplore.ieee.org/document/7780459/ .
18. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K. Q. (2017). Densely connected convolutional networks. In 2017 IEEE conference on computer vision and pattern recognition (CVPR) (pp. 2261–2269). IEEE, http://dx.doi.org/10.1109/CVPR.2017.243 , URL: https://ieeexplore.ieee.org/document/8099726/ .
19. Mohan, V. S., Vinayakumar, R., Sowmya, V., & Soman, K. (2019). Deep rectified system for high-speed tracking in images. In S. M. Thampi, E.-S. M. El- Alfy (Eds.), Journal of Intelligent & Fuzzy Systems, 36(3), 1957–1965. http://dx.doi.org/10.3233/JIFS-169907 , URL: https://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/JIFS-169907 .
20. Sachin, R., Sowmya, V., Govind, D., Soman, K. P. (2018). Dependency of various color and intensity planes on CNN based image classification. In S. M. Thampi, S. Krishnan, J. M. Corchado Rodriguez, S. Das, M. Wozniak, & D. Al-Jumeily (Eds.), Advances in signal processing and intelligent recognition systems (pp. 167–177). Cham: Springer International Publishing, http://dx.doi.org/10.1007/978-3-319-67934-1_15 , URL: http://link.springer.com/10.1007/978-3-319-67934-1_15 .
21. Oussama Chauiyakh, Aziz Et-tahir, Kamal Kettani, Abdelaziz Chaouch, Halima Bessi. Evaluation of the Bacteriological risk of solid Medical and Pharmaceutical waste from a Moroccan Hospital Center. Research Journal of Pharmacy and Technology. 2021; 14(6):2983-8. doi: 10.52711/0974-360X.2021.00522
22. Rajarajeswari. S, J. Prassanna, Abdul Quadir Md, Christy Jackson J, Shivam Sharma, B. Rajesh. Skin Cancer Detection using Deep Learning. Research Journal of Pharmacy and Technology. 2022; 15(10): 4519-5.
23. S Aghizion Inbakani, R Siva. Biosynthesis of Silver Nanoparticles using Edible Mushrooms and It’s bactericidal Activities. Research J. Pharm. and Tech. 2017; 10(2): 467-472.
24. Ballesteros B. Tobias G. Shao L. Pellicer E. Nogués J. Mendoza E. Green ML et al Steam Purification for the Removal of Graphitic Shells Coating Catalytic Particles and the Shortening of Single‐Walled Carbon Nanotubes. Small. 2008; 4(9): 1501-6. doi.org/10.1021/ja061680u.
25. Singh B. Lohan S. Sandhu PS. Jain A. Mehta SK. Functionalized carbon nanotubes and their promising applications in therapeutics and diagnostics. In Nanobiomaterials in Medical Imaging. 2016; 455-478, William Andrew Publishing. https://doi.org/10.1021/nn700040t
26. J.Prassanna, L.Jani Anbarasi, Rukmani.P, Christy Jackson.J, B.Rajesh, R.Manikandan. CNN based Framework for intelligent Diagnosis of Tuberculosis using Chest Radiographs. Research Journal of Pharmacy and Technology. 2022; 15(10):4529-2.
27. Shashank Swaroop. A Naive and Semantic Approach for Detecting Face Mask Region Based Convolutional Neural Networks (R-CNN). Research Journal of Engineering and Technology. 2021; 12(4): 105-9.