Author(s): Michael Ganda Wijaya, Chiquita Prahasanti, Bambang Dwi Laksono, Westy Agrawanty, Banun Kusumawardhani, Maria Jessica Anggakusuma

Email(s): chiquita-p-s@fkg.unair.ac.id

DOI: 10.52711/0974-360X.2024.00132   

Address: Michael Ganda Wijaya1, Chiquita Prahasanti2*, Bambang Dwi Laksono2, Westy Agrawanty1, Banun Kusumawardhani3, Maria Jessica Anggakusuma1
1Resident of Postgraduate Program in Periodontics, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia.
2Department of Periodontology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia.
3Department of Biomedical Sciences, Faculty of Dentistry, Universitas Jember, Jember, Indonesia.
*Corresponding Author

Published In:   Volume - 17,      Issue - 2,     Year - 2024


ABSTRACT:
Surgery is required to restore bone loss brought on by regenerative periodontal diseases while retaining the patient's aesthetics. The bone deficits caused by periodontal disease have been repaired using a variety of transplant materials. One of the graft materials used is dentin since it resembles bone in terms of both organic and inorganic components. In order to evaluate the viability of dental grafts, this study intended to count the osteoblast cells that were still alive after a specific therapy. Osteoblast cell cultures in 42 well plates were employed in this work. The 42 well plate cell cultures were separated into seven groups for 24hour examinations and seven groups for 48 hour examinations in order to examine the cells using the MTT assay. Each group contained control cells, control media devoid of cells, and the treatment group, which received tooth transplant at doses of 8, 4, 2, 1, and 0.5mg/mL. Using an ELISA reader with a 595nm wavelength, the optical density of these cells was used to determine the viability of the cells. There are more than 50% of osteoblast cells in all concentrations, which is indicated by the number of these cells. The Shapiro-Wilk, Levene, and Oneway Anova tests were performed to assess the normality, uniformity, and degree of group differences in the data. This study demonstrates the biocompatibility of the tooth graft and the osteoblast cells.


Cite this article:
Michael Ganda Wijaya, Chiquita Prahasanti, Bambang Dwi Laksono, Westy Agrawanty, Banun Kusumawardhani, Maria Jessica Anggakusuma. Research Journal of Pharmacy and Technology. 2024; 17(2):855-9. doi: 10.52711/0974-360X.2024.00132

Cite(Electronic):
Michael Ganda Wijaya, Chiquita Prahasanti, Bambang Dwi Laksono, Westy Agrawanty, Banun Kusumawardhani, Maria Jessica Anggakusuma. Research Journal of Pharmacy and Technology. 2024; 17(2):855-9. doi: 10.52711/0974-360X.2024.00132   Available on: https://rjptonline.org/AbstractView.aspx?PID=2024-17-2-60


REFERENCES:
1.    Newman M, Hendri TH, Klovkkevold PR, Carranza FA. Download Newman Carranza’s Clinical Periodonyology 11th Ed - Ublog Tk - ID:5c137563d13c0. 2012
2.    Agarwal R, T L. Salivary Enzymes as Biomarkers for Periodontitis – An Update. Research Journal of Pharmacy and Technology. 2014; 7:98–100.
3.    Larasati RD, Purwanti T, Purwanto DA. The Effect of Sodium Alginate Concentration to Physical Characteristics, viability, and Antioxidant Activity of the Probiotic-Tomato paste Microparticles. Research Journal of Pharmacy and Technology. 2018; 11:2454–2459.doi.org/10.5958/0974-360X.2018.00452.3
4.    Ramadhani NF, Nugraha AP, Ihsan IS, et al. Gingival Medicinal Signaling Cells Conditioned Medium effect on the Osteoclast and Osteoblast number in Lipopolysaccharide-induced Calvaria Bone Resorption in Wistar Rats’ (Rattus novergicus). Research Journal of Pharmacy and Technology. 2021; 14: 5232–5237. doi.org/10.52711/0974-360X.2021.00911
5.    Pandit N, Malik R, Philips D. Tissue engineering: A new vista in periodontal regeneration. Journal of Indian Society of Periodontology. 2011; 15:328.doi.org/10.4103/0972-124X.92564
6.    Pilloni A, Pompa G, Saccucci M, et al. Analysis of human alveolar osteoblast behavior on a nano-hydroxyapatite substrate: an in vitro study. BMC Oral Health. 2014; 14: 22. doi.org/10.1186/1472-6831-14-22
7.    Badhai S, Barik D, Mallick BC. Anticancer efficacy of β-Sitosterol Loaded Hydroxyapatite-Alginate on Colon Cancer Cell in Vivo. Research Journal of Pharmacy and Technology. 2020; 13: 1147–1151. doi.org/10.5958/0974-360X.2020.00211.5
8.    Bajes HR, Oran SA, Bustanji YK. Chemical Composition and Antiproliferative and Antioxidant Activities of Methanolic Extract of Alcea setosa A. Malvaceae. Research Journal of Pharmacy and Technology. 2021; 14:6447–6454. doi.org/10.52711/0974-360X.2021.01115
9.    Bucholz RW, Heckman JD, Court-Brown CM, Tornetta P. Rockwood and Green’s Fractures in Adults. 2009
10.    Kaur P, Kataria SK, Singh3 B, Arora S. Pharmacognostic Profile of Trigonella corniculata L. Seeds and effect of its Aqueous Extract on Growth Inhibition of Cancer Cells. Research Journal of Pharmacy and Technology. 2018; 11: 2022–2029. doi.org/10.5958/0974-360X.2018.00375.X
11.    Dumitrescu AL. Bone Grafts and Bone Graft Substitutes in Periodontal Therapy. Chemicals in Surgical Periodontal Therapy. 2011:73–144. doi.org/10.1007/978-3-642-18225-9_2
12.    Das MP, V VJ, R SP, M R, Prasad K. Efficient Dye Decolorization of an Azo dye on Fish Scale Hydroxyapatite. Research Journal of Pharmacy and Technology. 2019; 12: 2917–2921. doi.org/10.5958/0974-360X.2019.00491.8
13.    Kim E-S. Autogenous fresh demineralized tooth graft prepared at chairside for dental implant. Maxillofacial Plastic and Reconstructive Surgery. 2015; 37:8.doi.org/10.1186/s40902-015-0009-1
14.    Zulkifeli NRAN, Zain HHM, Zainol I, Musa NHC. The properties of Hydrolysed Collagen from Oreochromis mossambicus’s scale and their effect towards Cell viability. Research Journal of Pharmacy and Technology. 2020; 13: 5855–5860. doi.org/10.5958/0974-360X.2020.01020.3
15.    Kim Y-K, Lee JK, Kim K-W, Um I-W, Murata M. Healing Mechanism and Clinical Application of Autogenous Tooth Bone Graft Material. Advances in Biomaterials Science and Biomedical. Applications 2013.doi.org/10.5772/53200
16.    Singh S, Pal A, Mohanty S. Nano Structure of Hydroxyapatite and its modern approach in Pharmaceutical Science. Research Journal of Pharmacy and Technology. 2019; 12: 1463–1472. doi.org/10.5958/0974-360X.2019.00243.9
17.    Christian Khoswanto drg, Ester Arijani Rahmat drg, Pratiwi Soesilawati  drg. Uji Sitotoksisitas Dentin Konditioner Asam Sitrat 50% Menggunakan MTT Assay. 2006
18.    Sugiyono S. Metode Penelitian Kuantitatif Kualitatif Dan RD - 2011. 2011
19.    Kamadjaja MJK, Salim S, Subiakto BDS. Application of Hydroxyapatite scaffold from Portunus pelagicus on OPG and RANKL expression after tooth extraction of Cavia cobaya. Research Journal of Pharmacy and Technology. 2021; 14: 4647–4651. doi.org/10.52711/0974-360X.2021.00807
20.    Girija C, Sivakumar MN. Amalgamation and Characterization of Hydroxyapatite Powders from Eggshell for Functional Biomedical Application. Research Journal of Pharmacy and Technology. 2018; 11:4242–4244.doi.org/10.5958/0974-360X.2018.00777.1
21.    Singh S, Pal A, Mohanty S. Nano Structure of Hydroxyapatite and its modern approach in Pharmaceutical Science. Research Journal of Pharmacy and Technology. 2019; 12: 1463–1472. doi.org/10.5958/0974-360X.2019.00243.9
22.    Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials. 2005; 26: 5474–5491. doi.org/10.1016/j.biomaterials.2005.02.002
23.    Catrawardhana P, Saharso ER, Mushlih Y, Hapsari Y, Fadilah F. Phytochemistry and Cytotoxicity Analysis of Kemang (Mangifera kemanga) Fruit Extract on HeLa Cervical Cancer Cell Line. Research Journal of Pharmacy and Technology. 2022; 15: 1721–1726. doi.org/10.52711/0974-360X.2022.00288
24.    Kartono K, Sherllyana G, Widyastuti W, Setiawan HW. Biokompabilitas Hidroksiapatit Graftdari Cangkang Kerang Darah (Anadara Granosa) terhadap Kultur sel Fibroblast. 2018
25.    Junaedi S. Prosedur Tetap: Uji Sitotoksik Metode MTT. 2009
26.    Ma’ruf MT, Siswomihardjo W, Tontowi MHAE. Uji Biokompatibilitas Komposit Polivinil Alkoholhidroksiapatit Dengan Penguat Catgut Sebagai Bahan Penyambung Patah Tulang. Jurnal Teknosains. 2013; 3. doi.org/10.22146/teknosains.6128
27.    Schmalz G, Arenholt-Bindslev D. Biocompatibility of Dental Materials. 2004
28.    Harsas NA. Efek Pemberian Graft Tulang Berbentuk Pasta dengan Berbagai Konsentrasi dan Komposisi terhadap Viabilitas Sel Osteoblast in vitro. 2008
29.    da Rocha MIPNM. Nicotine effects on bone metabolism: in vitro studies with human osteoclasts and co-cultures of osteoclasts and osteoblasts in an hydroxyapatite surface. 2011
30.    Zulkifeli NRAN, Zain HHM, Zainol I, Musa NHC. The properties of Hydrolysed Collagen from Oreochromis mossambicus’s scale and their effect towards Cell viability. Research Journal of Pharmacy and Technology. 2020; 13: 5855–5860. doi.org/10.5958/0974-360X.2020.01020.3
31.    Pinnamaneni R. Cell Viability Studies and Anti-cancerous activity Evaluation of Pomegranate (Punica granatum L) extract. Research Journal of Pharmacy and Technology. 2020; 13:303–307.doi.org/10.5958/0974-360X.2020.00061.X
32.    Kini U, Nandeesh BN. Physiology of Bone Formation, Remodeling, and Metabolism. Radionuclide and Hybrid Bone Imaging. 2012:29–57.doi.org/10.1007/978-3-642-02400-9_2
33.    Gupta R, Pandit N, Malik R, Sood S. Clinical and radiological evaluation of an osseous xenograft for the treatment of infrabony defects. J Can Dent Assoc. 2007; 73:513.
34.    Fazwishni S, Harijono B. Uji Sitotoksisitas Dengan Essei MTT.
35.    Saputra G, Nugraha AP, Budhy TI, et al. Nanohydroxyapatite-Chitosan Hydrogel Scaffold with Platelet Rich Fibrin and Buccal Fat Pad derived Stem Cell for Aggressive Periodontitis Treatment: A Narrative Review. Research Journal of Pharmacy and Technology. 2022; 15: 5903–5908. doi.org/10.52711/0974-360X.2022.00995
36.    Pinnamaneni R. Cell Viability Studies and Anti-cancerous activity Evaluation of Pomegranate (Punica granatum L) extract. Research Journal of Pharmacy and Technology. 2020; 13:303–307.doi.org/10.5958/0974-360X.2020.00061.X
37.    Ayobian-Markazi N, Fourootan T, Kharazifar MJ. Comparison of cell viability and morphology of a human osteoblast-like cell line (SaOS-2) seeded on various bone substitute materials: An in vitro study. Dent Res J (Isfahan). 2012; 9: 86–92. doi.org/10.4103/1735-3327.92959
38.    Girija C, Sivakumar MN. Amalgamation and Characterization of Hydroxyapatite Powders from Eggshell for Functional Biomedical Application. Research Journal of Pharmacy and Technology. 2018; 11: 4242–4244.doi.org/10.5958/0974-360X.2018.00777.1
39.    Principles and Practice of Implant Dentistry 2001 - Weiss (18-15) Dentistry.https://www.scribd.com/document/67371462/Principles-and-Practice-of-Implant-Dentistry-2001-Weiss-18-15 (Accessed: Jul. 11, 2022)
40.    Cerruti MG. Effect of The Immersion In Solutions That Stimulate Body Fluids. 2004
41.    Boskey AL. Mineralization of Bones and Teeth. Elements 2007; 3:385–391.doi.org/10.2113/GSELEMENTS.3.6.385
42.    Das MP, VVJ, RSP, MR, Prasad K. Efficient Dye Decolorization of an Azo dye on Fish Scale Hydroxyapatite. Research Journal of Pharmacy and Technology. 2019; 12: 2917–2921. doi.org/10.5958/0974-360X.2019.00491.8

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags


Not Available