ABSTRACT:
Cancer is the most devastating and widespread disease all over the globe. To overcome drug resistance, new drugs need to be developed that are target specific. Previously designed ten steroidal chalcone derivatives were assessed for their pharmacokinetic profile and toxicity. The present study describes the evaluation of these derivatives for their ADME profile and toxicity using Swiss ADME and OSIRIS web tools. Structures of designed steroidal chalcone derivatives and progesterone (standard) were converted into canonical SMILES format by using Swiss ADME web tool. These structures were submitted to the Swiss ADME web tool that provided physicochemical and pharmacokinetic properties of the compounds. The OSIRIS web server was mainly used for predicting toxicity properties of all derivatives. OSIRIS results on toxicity showed that all compounds were slightly toxic. Based on Swiss ADME analysis, compounds 4, 9 and 10 have an acceptable bioavailability and comply with Lipinski's rule of five. By evaluating their drug score and ADMET properties, it was concluded that compounds 4, 9 and 10 could potentially have favourable characteristics of oral drugs, and further research could be carried out to evaluate them as anticancer agents by performing in-vitro and in-vivo cytotoxic studies.
Cite this article:
Marwa M. Mukadam, Deepali M. Jagdale. In silico ADME/T Prediction of Steroidal Chalcone derivatives using Swiss ADME and OSIRIS explorer. Research Journal of Pharmacy and Technology. 2024; 17(2):843-8. doi: 10.52711/0974-360X.2024.00130
Cite(Electronic):
Marwa M. Mukadam, Deepali M. Jagdale. In silico ADME/T Prediction of Steroidal Chalcone derivatives using Swiss ADME and OSIRIS explorer. Research Journal of Pharmacy and Technology. 2024; 17(2):843-8. doi: 10.52711/0974-360X.2024.00130 Available on: https://rjptonline.org/AbstractView.aspx?PID=2024-17-2-58
REFERENCES
1. https://www.who.int/news-room/fact-sheets/detail/cancer
2. Anusha D Souza, Babu D, Gireesh GR. Assess Level of Risk of Cervical Cancer among Women in selected Community Area, Mangalore. Asian Journal of Nursing Education and Research. 2014; 4(4): 461-468.
3. Walcher L, et al. Cancer stem cells-origins and biomarkers: perspectives for targeted personalized therapies. Frontiers in Immunology. 2020; 11: 1-33.doi:10.3389/fimmu.2020.01280
4. Huang Y, et al. Synthesis and antiproliferative activity of some steroidal lactams. Steroids. 2011; 76(12): 1346-50. doi:10.1016/j.steroids.2011.06.013
5. Fan NJ, et al. Synthesis and cytotoxicity of some novel 21E-benzylidene steroidal derivatives. Steroids. 2013; 78(9): 874-9. doi:10.1016/j.steroids.2013.04.016
6. Suthar VB, et al. Significance of Estrogen in Acute Coronary Syndrome. Research Journal of Pharmacology and Pharmacodynamics. 2011;3(4):210-214.
7. Chen B, et al. Involvement of the estrogen and progesterone axis in cancer stemness: elucidating molecular mechanisms and clinical significance. Frontiers in Oncology. 2020; 10: 1-14. doi:10.3389/fonc.2020.01657
8. Finlay-Schultz J, Sartorius CA. Steroid hormones, steroid receptors, and breast cancer stem cells. Journal of mammary gland biology and neoplasia. 2015;20(1):39-50.doi:10.1007/s10911-015-9340-5
9. Saudagar RB, et al. SERM’s in Treatment of Breast Cancer. Asian Journal of Pharmaceutical Research. 2011;1(4):81-86.
10. Yadav R, Yadav N, Kharya MD. Steroid Chemistry and Steroid Hormone Action: A Review. Asian Journal of Research in Chemistry. 2014;7(11):964-969.
11. Revathi R, Julius A. A Biological Effect of Sex Hormone Binding Globulin and Testosterone in Polycystic Ovary Syndrome (PCOS) Obese Women. Research Journal of Pharmacy and Technology. 2017;10(7): 2143-2145. doi:10.5958/0974-360X.2017.00377.8
12. Chelamalla R, Makula A. Molecular docking studies and ADMET Predictions of Pyrimidine Coumarin Scaffolds as Potential IDO Inhibitors. Asian Journal of Research in Chemistry. 2017; 10(3): 331-340. doi:10.5958/0974-4150.2017.00056.6
13. Yadav A, Mohite S. ADME Analysis of Phytochemical Constituents of Psidium guajava. Asian Journal of Research in Chemistry. 2020; 13(5): 373-375.doi:10.5958/0974-4150.2020.00070.X
14. Kiran G, et al. In silico computational screening of KabasuraKudineer-official Siddha formulation and JACOM against SARS-CoV-2 spike protein. Journal of Ayurveda and integrative medicine. 2020: 100324. doi.org/10.1016/j.jaim.2020.05.009
15. Karthick J, Kumar P, Loganathan S. In-Silico Analysis of Targeted Drug Delivery to Hepatic Cells using Lipid Nano-Particles to Treat Liver Diseases. Asian Journal of Pharmacy and Technology.2013;3(4):189-194.
16. Khdar ZA, Sliman F, Kousara M. Design and In-Silico ADMET Analysis of new Benzopyrane-derived Pim-1 Inhibitors. Research Journal of Pharmacy and Technology. 2019; 12(11): 5413-5423. doi:10.5958/0974-360X.2019.00939.9
17. Durán-Iturbide NA, Díaz-Eufracio BI, Medina-Franco JL. In Silico ADME/Tox Profiling of Natural Products: A Focus on BIOFACQUIM. ACS Omega. 2020; 5(26): 16076-84. doi:10.1021/acsomega.0c01581
18. Daina A, Michielin O, ZoeteV. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports. 2017;7:1-13. doi:10.1038/srep42717
19. Jerine PS, et al. ADME and Inhibitory Target Molecules Predicition of Cyamopsis tetragonoloba. Research Journal of Pharmacy and Technology. 2021; 14(1): 146-152. doi:10.5958/0974-360X.2021.00026.3
20. Srivastava R. Theoretical Studies on the Molecular Properties, Toxicity, and Biological Efficacy of 21 New Chemical Entities. ACS Omega. 2021; 6(38): 24891-901 .doi:10.1021/acsomega.1c03736
21. Lagorce D, et al. Computational analysis of calculated physicochemical and ADMET properties of protein-protein interaction inhibitors. Scientific Reports. 2017; 7(1): 1-5. doi:10.1038/srep46277
22. Lipinski CA, et al. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews. 2012; 64(1–3): 4-17. doi:10.1016/j.addr.2012.09.019
23. Khojasteh SC, Wong H, Hop CE. ADME properties and their dependence on physicochemical properties. In Drug metabolism and pharmacokinetics quick guide. Springer. 2011: 165-181. doi:10.1007/978-81-4419-5629-3_9
24. Veber DF, et al. Molecular properties that influence the oral bioavailability of drug candidates. Journal of Medicinal Chemistry. 2002; 45(12): 2615-23. doi:10.1021/jm020017n
25. Van de Waterbeemd H, Gifford E. ADMET in silico modeling: towards prediction paradise? Nature Reviews Drug Discovery. 2003; 2(3): 192-204. doi:10.1038/nrd1032
26. Turner JV, Maddalena DJ, Agatonovic-Kustrin S. Bioavailability prediction based on molecular structure for a diverse series of drugs Pharmaceutical Research. 2004; 21(1): 68-82. doi:10.1023/b:pham.0000012154.09631.26
27. Al Mogren MM, et al. Molecular structure, drug likeness and QSAR modeling of 1, 2-diazole derivatives as inhibitors of enoyl-acyl carrier protein reductase. Journal of King Saud University-Science. 2020; 32(4): 2301-10. doi:10.1016/j.jksus.2020.03.007
28. Bergström CA. In silico predictions of drug solubility and permeability: two rate limiting barriers to oral drug absorption. Basic and Clinical Pharmacology and Toxicology. 2005; 96(3): 156-61. doi:10.1111/j.1742- 7843.2005.pto960303.x
29. Honorio KM, Moda TL, Andricopulo AD. Pharmacokinetic properties and in silico ADME modeling in drug discovery. Medicinal Chemistry. 2013; 9(2): 163-76.doi:10.2174/1573406411309020002
30. Mvondo JG, et al. In Silico ADME/T Properties of Quinine Derivatives using SwissADME and pkCSM Webservers. 2021; 42(11): 1-12. doi:10.9734/IJTDH/2021/v42i1130492
31. Lynch T. The effect of cytochrome P450 metabolism on drug response, interactions, and adverse effects. American family physician. 2007;76(3):391-6.
32. https://www.organic-chemistry.org/prog/peo/drugScore.html