Author(s):
Baiq Nasha Islaeli, Puspa Wardhani, Aryati, Tutik Kusmiati
Email(s):
puspa-w-2@fk.unair.ac.id
DOI:
10.52711/0974-360X.2024.00103
Address:
Baiq Nasha Islaeli1, Puspa Wardhani2, Aryati3, Tutik Kusmiati4
1Basic Medical Science Master Program, Faculty of Medicine, Airlangga University, Surabaya, Indonesia.
2Department of Clinical Pathology, Faculty of Medicine, Airlangga University, Surabaya, Indonesia.
3Dr. Soetomo General Academic Hospital, Surabaya, Indonesia.
4Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, Airlangga University, Surabaya, Indonesia.
*Corresponding Author
Published In:
Volume - 17,
Issue - 2,
Year - 2024
ABSTRACT:
There are several limitations in using AFB and GeneXpert to evaluate the treatment of TB patients, one of which is influenced by sputum quality. Therefore, an alternative method is needed to help evaluate the treatment of TB patients. This study aimed to analyze the correlation of the Procalcitonin test with AFB and GeneXpert for evaluating the treatment of TB patients and the performance of Procalcitonin as a marker of TB patient treatment progress. A prospective cohort study was conducted from May to September 2022 at the West Nusa Tenggara General Hospital, Indonesia. Sputum and blood samples were collected from 36 patients who were confirmed positive for TB by GeneXpert MTB/RIF examination, then examined for procalcitonin and AFB before being given treatment and after the intensive phase of treatment. Procalcitonin tested with VIDAS Biomerieux and VIDAS BRAHMS PCT kit. Procalcitonin did not correlate with AFB (p=0.064, r= 0.327) and GeneXpert before treatment (p=0.169, r=0.245), but correlated with AFB (p=0.013, r=0.427) and GeneXpert MTB/RIF (p=0.020, r=0.405) after the intensive phase of treatment. Procalcitonin test with a cut-off value of 0.07 detected negative AFB cases after treatment with a sensitivity of 28.6 and a specificity of 96.2%. The procalcitonin cut-off value of 0.07 also detected negative Xpert MTB/RIF after treatment with a sensitivity of 16.7% and a specificity of 100%. The performance of Procalcitonin for detecting negative smear and negative Xpert MTB/RIF after the intensive phase of treatment is classified as having high specificity, but its sensitivity is still low. Future studies are needed to evaluate the performance of Procalcitonin compared to bacterial cultures.
Cite this article:
Baiq Nasha Islaeli, Puspa Wardhani, Aryati, Tutik Kusmiati. Correlation of Procalcitonin with Acid Fast Bacilli and Gene Xpert MTB/RIF as a Marker of Treatment Progress in Pulmonary Tuberculosis patients. Research Journal of Pharmacy and Technology. 2024; 17(2):665-2. doi: 10.52711/0974-360X.2024.00103
Cite(Electronic):
Baiq Nasha Islaeli, Puspa Wardhani, Aryati, Tutik Kusmiati. Correlation of Procalcitonin with Acid Fast Bacilli and Gene Xpert MTB/RIF as a Marker of Treatment Progress in Pulmonary Tuberculosis patients. Research Journal of Pharmacy and Technology. 2024; 17(2):665-2. doi: 10.52711/0974-360X.2024.00103 Available on: https://rjptonline.org/AbstractView.aspx?PID=2024-17-2-31
REFERENCES:
1. Kim J. Kim SE. Park BS. Shin KJ. Ha SY. Park J et al. Procalcitonin as a diagnostic and prognostic factor for tuberculosis meningitis. Journal of Clinical Neurology (Korea). 2016; 12(3): 332–9. DOI: 10.3988/jcn.2016.12.3.332
2. Lumbessy RH, Mertaniasih NM, Alimsardjono L, Soedarsono S. Comparison of chlorhexidine 0.7% and modified Petroff’s method on sputum decontamination for culture method to detect Mycobacterium tuberculosis. Bali Med J. 2023; 12(1): 222-7
3. Patel RG, Patel CK, Panigrahi B, Patel CN. Tuberculosis: Pathophysiology, Clinical Features, Diagnosis and Antitubercular Activity of an Actinomycin Produced by a New Species of Streptomyces. Research J. Pharmacology and Pharmacodynamics. 2010; 2(1):23-26
4. Oleg ZA, Elena B. Tyurina., Andrey A. Bashkirev., Elena V. Kalyuzhnaya., Ludmila O. Zemlyanskaya. Experience and Efficiency of Laboratory Diagnosis of Tuberculosis with PCR Detector System GeneXpert in Belgorod Region. Research J. Pharm. and Tech. 2017; 10(3): 743-746. doi: 10.5958/0974-360X.2017.00139.1
5. Suárez I. Fünger SM. Rademacher J. Fätkenheuer G. Kröger S. Rybniker J. The Diagnosis and Treatment of Tuberculosis. Dtsch Arztebl Int. 2019; 116(43): 729–35. DOI: 10.3238/arztebl.2019.0729
6. Mawarti H, Rajin M, Khusniyah Z, Asumta Z, Khotimah, Christina Destri Wiwis Wijayanti. Aloe vera and its potency as antituberculosis against strains of Mycobacterium tuberculosis that is resistant to some tuberculosis drugs. Bali Med J. 2022; 11(3): 1879-83
7. Patil MO, Mali YS, Patil PA, Karnavat DR. Development of Immunotherapeutic Nanoparticles for treatment of Tuberculosis. Asian J. Pharm. Res. 2020; 10(3):226-232. DOI: 10.5958/2231-5691.2020.00039.8
8. Manthankumar NK. Tuberculosis Case Study. Int. J. of Advances in Nur. Management. 2021; 9(2): 160-161. DOI: 10.5958/2454-2652.2021.00036.6
9. Indonesian Health Ministry. Pedoman Nasional Pelayanan Kedokteran Tata Laksana Tuberkulosis. Jakarta; 2020
10. Aliyah N. Pranggono EH. Andriyoko B. Gambaran Konversi Sputum Bakteri Tahan Asam (BTA) dan Vitamin D Pada Penderita Tuberkulosis Paru Kasus Baru. Indonesian Journal of Chest: Critical and Emergency Medicine. 2016; 3(1):1–6.
11. Sinshaw W. Kebede A. Bitew A. Tesfaye E. Tadesse M. Mehamed Z. et al. Prevalence of tuberculosis, multidrug resistant tuberculosis and associated risk factors among smear negative presumptive pulmonary tuberculosis patients in Addis Ababa, Ethiopia. BMC Infect Dis. 2019; 19(1):641. DOI: 10.1186/s12879-019-4241-7
12. Umair M. Siddiqui SA. Farooq MA. Diagnostic Accuracy of Sputum Microscopy in Comparison With GeneXpert in Pulmonary Tuberculosis. Cureus. 2020; 12(11): e11383. DOI 10.7759/cureus.11383
13. Paweninggalih RE, Mertaniasih NM, Koendhori EB, Soedarsono S. Time to detection of Mycobacterium tuberculosis using culture filtrate H37rv supplementation on MGIT 960 System. Bali Med J. 2023; 12(1): 228-34
14. Kumar VS, Nookala L, Prakash S, Vivean RP. Ziehl-Neelsen (ZN) Stained Method: Presence and Absence of Acid Fast Bacilli (AFB) of Pulmonary and Non Pulmonary Tuberculosis Patients Under Went Anti-Tuberculosis Treatment. Research J. Pharm. and Tech. 2015; 8(5): 529-532. DOI: 10.5958/0974-360X.2015.00088.8
15. World Health Organization. Automated real-time nucleic acid amplification technology for rapid and simultaneous detection of tuberculosis and rifampicin resistance: Xpert MTB/RIF assay for the diagnosis of pulmonary and extrapulmonary TB in adults and children. Geneva: WHO Press; 2013. 79 p
16. Varaine F. Rich M. Tuberculosis: Practical guide for clinicians, nurses, laboratory technicians and medical auxiliaries. Grouzard V. editor. Médecins Sans Frontières and Partners in Health; 2022
17. World Health Organization. Xpert MTB/RIF implementation manual: technical and operational ‘how-to’: practical considerations. [Internet]. WHO, editor. Geneva: WHO Press; 2014
18. Reddy R. Alvarez-Uria G. Molecular Epidemiology of Rifampicin Resistance in Mycobacterium tuberculosis Using the GeneXpert MTB/RIF Assay from a Rural Setting in India . J Pathog. 2017; 2017:1–5. DOI: 10.1155/2017/6738095
19. Meyer AJ. Atuheire C. Worodria W. Kizito S. Katamba A. Sanyu I et al. Sputum quality and diagnostic performance of GeneXpert MTB/RIF among smear-negative adults with presumed tuberculosis in Uganda. PLoS One. 2017; 12(7): 1-12. DOI: 10.1371/journal.pone.0180572
20. Aninagyei E. Ayivor-Djanie R. Attoh J. Dakorah M. Ginko M. Acheampong D. Molecular detection of Mycobacterium tuberculosis in blood stained sputum samples using GeneXpert PCR assay. Diagn Microbiol Infect Dis. 2021; 100(3). DOI: 10.1016/j.diagmicrobio.2021.115363
21. Taddese BD. Misganaw AS. Quality of same-day sputum smears microscopy and presumptive tuberculosis patients drop-out at health facilities of Addis Ababa, Ethiopia. Tuberc Respir Dis (Seoul). 2020; 83(1):89–95. DOI: 10.4046/trd.2019.0029
22. Ghobadi H. Lari SM. Amani F. Habibzadeh S. The Impact of Treatment on Serum Level of Procalcitonin in Patients with Active Pulmonary Tuberculosis. Journal of Cardio-Thoracic Medicine. 2014; 2(4):238–42
23. Rohini K. Bhat S. Srikumar PS. Kumar AM. Diagnostic and Prognostic Value of Procalcitonin in Tuberculosis Patients. Br J Med Med Res. 2013; 3(4):2189–96
24. Becker KL. Snider R. Nylen ES. Procalcitonin assay in systemic inflammation, infection, and sepsis: Clinical utility and limitations. Crit Care Med. 2008; 36(3):941–52. DOI: 10.1097/CCM.0B013E318165BABB
25. Jin M. Khan AI. Procalcitonin: Uses in the Clinical Laboratory for the Diagnosis of Sepsis. Lab Med. 2010; 41(3):173–7. DOI: 10.1309/LMQ2GRR4QLFKHCH9
26. Meisner M. Update on Procalcitonin Measurements. Ann Lab Med. 2014; 34(4):263–73. DOI: 10.3343/alm.2014.34.4.263
27. Novita C, Hernaningsih Y, Wardhani P, Veterini AS. The Correlation between leucocyte CD64, Immature Granulocyte and Presepsin with Procalcitonin in Bacterial Sepsis Patient. Bali Med J. 2019; 8(2): 419-24
28. Sinaga B, Mahadewa TGB, Maliawan and S. High Blood Levels Procalcitonin as Systemic Imflamatory Response Syndrome Predictor In Severe And Moderate Head Injury. Bali Med J. 2014; 3(1): 25-30
29. Abbas A. Lichtman A. Pillai S. Imunologi Dasar Abbas: Fungsi dan Kelainan Sistem Imun. 5th ed. Singapore: Winsland House 1; 2016. 131–148 p.
30. Sudiana K. Hantaran Sinyal Pada Proses Inflamasi. Surabaya: Airlangga University Press; 2017. 1–76 p.
31. Christ-Crain M. Schuetz P. Huber AR. Müller B. Procalcitonin: Importance for the diagnosis of bacterial infections 1. LaboratoriumsMedizin. 2008; 32(6). DOI: 10.1515/JLM.2008.063et
32. Schuetz P. Albrich W. Mueller B. Procalcitonin for diagnosis of infection and guide to antibiotic decisions: Past, present and future. BMC Medicine. 2011; 9:1–9. DOI: 10.1186/1741-7015-9-107
33. Patsis T. Sierros V. Fleming R. Brady T. The role of procalcitonin in patients with suspected pulmonary tuberculosis. Chest. 2008; 134(4):153. DOI: 10.1378/chest.134.4_meetingabstracts.p153004
34. Huang CT. Lee LN. Ho CC. Shu C. Ruan SY. Tsai YJ. et al. High serum levels of procalcitonin and soluble TREM-1 correlated with poor prognosis in pulmonary tuberculosis. Journal of Infection. 2014; 68(5):440–7. DOI: 10.1016/j.jinf.2013.12.012
35. Osawa T. Watanabe M. Morimoto K. Okumura M. Yoshiyama T. Ogata H et al. Serum procalcitonin levels predict mortality risk in patients with pulmonary tuberculosis: A single-center prospective observational study. Journal of Infectious Diseases. 2020; 222(10):1651–4. DOI: 10.1093/infdis/jiaa275
36. Velasco-Arnaiz E. Esther Pérez E. Desirée Henares D. Fernández-López A. Valls A. Brotons P et al. Use of procalcitonin in the diagnosis of tuberculosis in infants and preschool children. Eur J Pediatr. 2018; 177:1377–81. DOI: 10.1007/s00431-018-3099-9
37. Statistical Center Body of West Nusa Tenggara. Jumlah Penduduk Nusa Tenggara Barat Menurut Kabupaten/Kota dan Jenis Kelamin (Jiwa), 2010-2020. Statistical Center Body. 2022.
38. Orina F. Mwangi M. Githui W. Kiptoo M. Sang W. Kariuki J et al. Effect of sputum qualityon Xpert® MTB/RIFresults in the detectionof Mycobacteriumtuberculosisfrom persons presumedto have Tuberculosis inEAPHLN project Operational Research study sitesin Kenya. Afr J Health Sci. 2014; 27(4):446–56
39. Ho J. Marks GB. Fox GJ. The impact of sputum quality on tuberculosis diagnosis a systematic review. International Journal of Tuberculosis and Lung Disease. 2015; 19(5):537–44. DOI: 10.5588/ijtld.14.0798
40. Oematan Y. Manoppo JICh. Runtunuwu AL. Peran inflamasi dalam patofisiologi sepsis dan syok septik pada anak. Jurnal Biomedik (JBM). 2013; 1(3). DOI: 10.35790/jbm.1.3.2009.831
41. Grimes D. Infectious Diseases. Missouri: Mosby Year Book Inc; 1991. 148–149 p.
42. Levinson W. Chin-Hong P. Joyce E. Nusbaum J. Schwartz B. Review of Medical Microbiology & Immunology: A guide to clinical infectious diseases. 17th ed. USA: McGraw-Hill Companies Inc; 2018
43. Saranya, Parthasarathy V, Hariprasad B, Shobha Rani H. Factors Influencing Rifampicin Autoinduction in Adult Pulmonary Tuberculosis Patients. Research J. Pharm. and Tech 2016; 9(8):1223-1228. DOI: 10.5958/0974-360X.2016.00233.X
44. Madhavi R, Mohana KA, Shobha RG, Mounika D. Isoniazid: A Review of Analytical Methods. Asian J. Pharm. Ana. 2014; 5(1): 41-45. DOI: 10.5958/2231-5675.2015.00008.3
45. Lakshmi SD, Jacob ST. Validated Degradation studies for the estimation of Pyrazinamide, Ethambutol, Isoniazid and Rifampacin in a fixed dose combination by UPLC. Research J. Pharm. and Tech 2018; 11(7): 2869-2875. DOI: 10.5958/0974-360X.2018.00529.2
46. Sivakumar U, Sangeetha D. Identification of New Inhibitor against Mycobacterium tuberculosis using structure based Drug Designing and Docking Studies. Res. J. Pharmacognosy and Phytochem. 2017; 9(3): 173-176. DOI: 10.5958/0975-4385.2017.00032.2
47. Khawas S, Parui S, Dey S, Mondal SK, Sarkar S. Simultaneous Spectrophotometric Estimation of Rifampicin, Isoniazid and Pyrazinamide in their Pharmaceutical Dosage Form. Asian J. Research Chem. 2020; 13(2):117-122. DOI: 10.5958/0974-4150.2020.00024.3
48. Shaviya N. Budambula V. Webale MK. Were T. Circulating Interferon-Gamma Levels Are Associated with Low Body Weight in Newly Diagnosed Kenyan Non-Substance Using Tuberculosis Individuals. Interdiscip Perspect Infect Dis. 2016; 2016:9415364. DOI: 10.1155/2016/9415364
49. Linscheid P. Seboek D. Nylen ES. Langer I. Schlatter M. Becker KL et al. In Vitro and in Vivo Calcitonin I Gene Expression in Parenchymal Cells: A Novel Product of Human Adipose Tissue. Endocrinology. 2003; 144(12):5578–84. DOI: 10.1210/en.2003-0854
50. Niu WY. Wan YG. Li MY. Wu ZX. Zhang LG. Wang JX. The diagnostic value of serum procalcitonin, IL-10 and C-reactive protein in community acquired pneumonia and tuberculosis. European Review for Medical and Pharmacological Science. 2013; 17:3329–33.
51. Ma’at S. Inflamasi. 1st ed. Surabaya: Airlangga University Press; 2012.
52. Gendrel D. Bohuon C. Procalcitonin, a marker of bacterial infection. Infection. 1997; 25(3):133–4. DOI: 10.1007/BF02113598
53. Lange B. Khan P. Kalmambetova G. Al-Darraji HA. Alland D. Antonenka U et al. Diagnostic accuracy of the Xpert ® MTB/RIF cycle threshold level to predict smear positivity: a meta-analysis. The International Journal of Tuberculosis and Lung Disease. 2017; 21(5):493–502. DOI: 10.5588/ijtld.16.0702
54. Opota O. Senn L. Prod’hom G. Mazza-Stalder J. Tissot F. Greub G et al. Added value of molecular assay Xpert MTB/RIF compared to sputum smear microscopy to assess the risk of tuberculosis transmission in a low-prevalence country. Clinical Microbiology and Infection. 2016; 22(7):613–9. DOI: 10.1016/j.cmi.2016.04.010
55. Poonawala H. Leekha S. Medina-Moreno S. Filippell M. Johnson JK. Redfield RR et al. Use of a Single Xpert MTB/RIF Assay to Determine the Duration of Airborne Isolation in Hospitalized Patients With Suspected Pulmonary Tuberculosis. Infect Control Hosp Epidemiol. 2018; 39(5):590–5. DOI: 10.1017/ice.2018.25
56. Lippincott CK. Miller MB. Popowitch EB. Hanrahan CF. van Rie A. Xpert MTB/RIF Assay Shortens Airborne Isolation for Hospitalized Patients With Presumptive Tuberculosis in the United States. Clinical Infectious Diseases. 2014; 59(2):186–92. DOI: 10.1093/cid/ciu212
57. Arend SM. van Soolingen D. Performance of Xpert MTB/RIF Ultra: a matter of dead or alive. Lancet Infect Dis. 2018; 18(1):8–10. DOI: 10.1016/S1473-3099(17)30695-3
58. Theron G. Venter R. Calligaro G. Smith L. Limberis J. Meldau R. et al. Xpert MTB/RIF Results in Patients With Previous Tuberculosis: Can We Distinguish True From False Positive Results? Clinical Infectious Diseases. 2016; 62(8):995–1001. DOI: 10.1093/cid/civ1223
59. Theron G. Venter R. Smith L. Esmail A. Randall P. Sood V et al. False-Positive Xpert MTB/RIF Results in Retested Patients with Previous Tuberculosis: Frequency, Profile, and Prospective Clinical Outcomes. J Clin Microbiol. 2018; 56(3). DOI: 10.1128/JCM.01696-17