Author(s): Shafira Kurnia Supandi, Ni Luh Desy Ayu Susilahati, Lubna, Yasmin Firdausi Rezkika, Agung Krismariono, Ernie Maduratna


DOI: 10.52711/0974-360X.2024.00092   

Address: Shafira Kurnia Supandi*, Ni Luh Desy Ayu Susilahati, Lubna, Yasmin Firdausi Rezkika, Agung Krismariono, Ernie Maduratna
Department of Periodontology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya – Indonesia.
*Corresponding Author

Published In:   Volume - 17,      Issue - 2,     Year - 2024

Background: Periodontal ailment is in a way the most frequent disorder that humanity faces. Severe periodontitis, which affects roughly 743 million people globally around the world, is the sixth-grade greatest prevalence (11.2%) of any illness. Hydroxyapatite (HA) is a major element for bone regeneration. Biocompatibility, bioactivity, low degradation, osteoconduction, osteointegration, and osteoinduction are all big benefits of HA. Osteoinduction is a system wherein osteoprogenitor cells are stimulated to turn into osteoblasts, which then start the development of new bone. Purpose: This study provides a complete overview of the history and evolution of the use of HA for various regeneration applications, as well as evolving trends. Conclusion: By using HA as a scaffold for osteoinduction, osteoprogenitor cells are stimulated to form osteoblasts, which subsequently initiate the construction of new bone.

Cite this article:
Shafira Kurnia Supandi, Ni Luh Desy Ayu Susilahati, Lubna, Yasmin Firdausi Rezkika, Agung Krismariono, Ernie Maduratna. Micro Hydroxyapatite in Bone Regeneration: A Literature Review. Research Journal of Pharmacy and Technology. 2024; 17(2):591-4. doi: 10.52711/0974-360X.2024.00092

Shafira Kurnia Supandi, Ni Luh Desy Ayu Susilahati, Lubna, Yasmin Firdausi Rezkika, Agung Krismariono, Ernie Maduratna. Micro Hydroxyapatite in Bone Regeneration: A Literature Review. Research Journal of Pharmacy and Technology. 2024; 17(2):591-4. doi: 10.52711/0974-360X.2024.00092   Available on:

1.    Tonetti MS, Jepsen S, Jin, Corgel JO. Impact of the Global Burden of Periodontal Diseases on Health, Nutrition and Wellbeing of Mankind: A Call for Global Action. J Clin Periodont. 2017:1–7.
2.    Frencken JE., Sharma P, Stenhouse L, Green D, Laverty D, Dietrich T. Global Epidemiology of Dental Caries and Severe Periodontitis – A Comprehensive Review. Journal of Clinical Periodontology. 2017; 44 (18): S94–S105.
3.    Kumar P, Vinitha B, Fathima G. Bone grafts in dentistry. Journal of Pharmacy & Bioallied Sciences. 2013;5(1):S125.
4.    Kattimani VS, Kondaka S, Lingamaneni KP. Hydroxyapatite–-Past, present, and future in bone regeneration. Bone and Tissue Regeneration Insights. 2016; 7: BTRI-S36138. doi:10.4137/BTRI.S36138
5.    Hench LL, Thompson I. Twenty-first century challenges for biomaterials. Journal of the Royal Society Interface. 2010; 7(4): S379-91.
6.    Dai X, Shivkumar S. Electrospinning of hydroxyapatite fibrous mats. Materials Letters. 2007;61(13):2735-8.
7.    Laurencin C, Khan Y, El Amin SF. Bone graft substitutes. Expert Rev Med Devices. 2006; 3: 49 57.
8.    Sudarmono, Sunardhi Widyaputra, Suhardjo Sitam, Inne Suherna, Arni D. Fitri, Arif Rachman. Comparison of Bone regeneration in hADMSC Versus hUCBMSC with hBMMSC as a Reference: A Literature Review of Potential Bone Regeneration. Research J Pharm and Tech 2021; 14(4): 1993-8. doi: 10.52711/0974-360X.2021.00353
9.    Hima Jose, K. Krishnakumar, Dineshkumar B. Herbal Extracts based Scaffolds for Wound Healing Therapy. Research J Pharm and Tech. 2021; 14(3):1805-1810. doi: 10.5958/0974- 360X.2021.00320.6
10.    Giannoudis PV, Dinopoulos H, Tsiridis E. Bone substitutes: an update. Injury. 2005 Nov 1;36(3):S20-7.
11.    Kamadjaja MJ, Salim S, Subiakto BD. Application of Hydroxyapatite scaffold from Portunus pelagicus on OPG and RANKL expression after tooth extraction of Cavia cobaya. Research J Pharm and Tech. 2021; 14(9): 4647-1. doi: 10.52711/0974-360X.2021.00807
12.    Girija C, Sivakumar MN. Amalgamation and characterization of hydroxyapatite powders from eggshell for functional biomedical application. Res J Pharm Tech. 2018; 11(10): 4242-4. doi: 10.5958/0974-360X.2018.00777.1
13.    Panigrahy UP, Reddy A. A novel validated RP-HPLC-DAD method for the estimation of Eluxadoline in bulk and pharmaceutical dosage form. Res J Pharm Tech. 2015; 8(11): 1469-76.
14.    Merlin NJ, Shaji S, Sukesh TN. Nano Technology–Potential Applications in Medicine. Asian J Res Pharma Sci. 2011; 1(2): 31-5.
15.    Bansal S, Chauhan V, Sharma S, Maheshwari R, Juyal A, Raghuvanshi S. Evaluation of Hydroxyapatite and Beta Tricalcium Phosphate Mixed with Bone Marrow Aspirate as A Bone Graft Substitute for Posterolateral Spinal Fusion. Indian J Orthop. 2009; 43: 234 9
16.    Dorozhkin SV. Calcium Orthophosphates Applications in Nature, Biology and Medicine. Boca Raton, FL: Pan Stanford Publishing; 2012.
17.    Yuan H, Fernandes H, Habibovic P, et al. Osteoinductive Ceramics as A Synthetic Alternative to Autologous Bone Grafting. Proc Natl Acad Sci USA. 2010; 107: 13614–13619.
18.    Habibovic P, Yuan H, van der Valk CM, Meijer G, van Blitterswijk CA, de Groot K. 3D Microenvironment as Essential Element for Osteoinduction by Biomaterials. Biomaterials. 2005; 26: 3565–3575.
19.    Habibovic P, Sees TM, van den Doel MA, van Blitterswijk CA, de Groot K. Osteoinduction by Biomaterials—Physicochemical and Structural Influences. J Biomed Mater Res A. 2006; 77A: 747–762.
20.    LeGeros RZ. Properties of osteoconductive biomaterials: calcium phosphates. Clin Orthop Relat Res. 2002; 395: 81–98.
21.    Yamasaki H, Sakai H. Osteogenic Response to Porous Hydroxyapatite Ceramics under The Skin of Dogs. Biomaterials. 1992;13:308–312
22.    Klein C, de Groot K, Chen W, Li Y, Zhang X. Osseous Substance Formation Induced in Porous Calcium Phosphate Ceramics in Soft Tissues. Biomaterials. 1994; 15:31–34.
23.    S. Mondal, B. Mondal, A. Dey, S.S. Mukhopadhyay. Studies on Processing and Characterization of Hydroxyapatite Biomaterials from Different Bio Wastes. J Miner Mater Charact. Eng. 11 (2012)
24.    S. Mondal, S. Mahata, S. Kundu, B. Mondal. Processing of Natural Resourced Hydroxyapatite Ceramics from Fish Scale. Adv Appl Ceram. 109 (2010) 234–239.
25.    S. Mondal, G. Hoang, P. Manivasagan, M.S. Moorthy, H.H. Kim, T.T. Vy Phan, J. Oh. Comparative Characterization of Biogenic and Chemical Synthesized Hydroxyapatite Biomaterials for Potential Biomedical Application. Mater Chem Phys. 228 (2019) 344–356.
26.    R. Panneerselvam, N. Anandhan, K. P. Ganesan, T. Marimuthu, I. Joseph Paneerdoss. Effect of Concentration on Nano Hydroxyapatite Powder by Wet Chemical Precipitation Route. Asian J. Research Chem. 2018; 11(3): 545-550. doi: 10.5958/0974-4150.2018.00097.4
27.    Khan Y, Saroj BK, Roy M, Aziz I. A review-emerging use of nano-based carriers in diagnosis and treatment of cancer-novel approaches. Asian J Pharm Tech. 2015; 5(1): 38-49. doi: 10.5958/2231-5713.2015.00008.2
28.    Roshan Telrandhe. Anti-Cancer Potential of Green Synthesized Silver Nanoparticles- A Review. Asian J Pharm Tech 2019; 9 (4):260-266. doi: 10.5958/2231-5713.2019.00043.6
29.    Yogita R. Indalkar, Nayana V. Pimpodkar, Anita S. Godase, Puja S. Gaikwad. A Compressive Review on the Study of Nanotechnology for Herbal Drugs. Asian J. Pharm. Res. 2015; 5(4): 203-207. doi: 10.5958/2231-5691.2015.00031.3
30.    Manivasagan P, Jun SW, Truong NT, Hoang G, Mondal S, Moorthy MS, Kim H, Phan TT, Doan VH, Kim CS, Oh J. A multifunctional near-infrared laser-triggered drug delivery system using folic acid conjugated chitosan oligosaccharide encapsulated gold nanorods for targeted chemo-photothermal therapy. J Materials Chem. 2019; 7(24): 3811-25. https://
31.    Mondal S, Manivasagan P, Bharathiraja S, Moorthy MS, Kim HH, Seo H, Lee KD, Oh J. Magnetic hydroxyapatite: a promising multifunctional platform for nanomedicine application. Inter J Nanomed. 2017; 12: 8389.
32.    Bal Z, Kaito T, Korkusuz F, Yoshikawa H. Bone regeneration with hydroxyapatite-based biomaterials. Emergent Materials. 2020; 3(4): 521-44. doi 10.1007/s00774-007-0804-6
33.    Kaito T, Myoui A, Takaoka K, Saito N, Nishikawa M, Tamai N, Ohgushi H, Yoshikawa H. Potentiation of the activity of bone morphogenetic protein-2 in bone regeneration by a PLA–PEG/hydroxyapatite composite. Biomaterials. 2005; 26(1): 73-9.
34.    Kaito T. Biologic enhancement of spinal fusion with bone morphogenetic proteins: current position based on clinical evidence and future perspective. J Spine Surg. 2016; 2(4): 357.
35.    Marin C, Luyten FP, Van der Schueren B, Kerckhofs G, Vandamme K. The impact of type 2 diabetes on bone fracture healing. Frontiers in Endocrinology. 2018; 9:6.
36.    Sakamoto M, Nakasu M, Matsumoto T, Okihana H. Development of superporous hydroxyapatites and their examination with a culture of primary rat osteoblasts. Journal of Biomedical Materials Research Part A. 2007; 82(1): 238-42.
37.    Singh S, Pal A, Mohanty S. Nano Structure of Hydroxyapatite and its modern approach in Pharmaceutical Science. Research J Pharm and Tech. 2019; 12(3): 1463- 1472. doi: 10.5958/0974-360X.2019.00243.9
38.    Priyadharshini S, Dhivya B. Application of Nanoscience and Technology in Medicine-Nanomedicine. Research J Engineering and Tech. 2013; 4(4): 300-305.
39.    Nagwanshi P, Sahu L, Sahu P, Sahu A, Sharma H, Sahu G. Novel Approaches of Treatment of Cancer: Nanoparticle. Res J Pharm Dosage Forms and Tech. 2020; 12(2): 115-124. doi: 10.5958/0975-4377.2020.00021.X
40.    Ritesh K, Amit KJ and Surendra KJ. Nanomedicine: An Emerging Area of Nanotechnology. Research J Pharm Dosage Forms and Tech. 2009; 1(1): 18-21.
41.    Xia L, Lin K, Jiang X, Xu Y, Zhang M, Chang J, Zhang Z. Enhanced osteogenesis through nano-structured surface design of macroporous hydroxyapatite bioceramic scaffolds via activation of ERK and p38 MAPK signaling pathways. Journal of Materials Chemistry B. 2013; 1(40): 5403-16.
42.    Ha SW, Park J, Habib MM, Beck Jr GR. Nano-hydroxyapatite stimulation of gene expression requires Fgf receptor, phosphate transporter, and Erk1/2 signaling. ACS Applied Materials & Interfaces. 2017; 9(45): 39185-96.
43.    Enas A, Elbarbary AM, Ibrahim NK, Said MM, Salem AM. The beneficial effect of nanostructured oligochitosan against gamma irradiation and/or Carbon Tetrachloride-Induced hepatic injury in rats. Res J Pharm Tech. 2021; 14(4): 2243-7. doi: 10.52711/0974-360X.2021.00398
44.    Nugraha AP, Rezkita F, Puspitaningrum MS, Luthfimaidah MS, Narmada IB, Prahasanti C, Ernawati DS, Rantam FA. Gingival mesenchymal stem cells and chitosan scaffold to accelerate alveolar bone remodelling in periodontitis: a narrative review. Res J Pharm Tech. 2020; 13(5): 2502-2506. doi: 10.5958/0974-360X.2020.00446.1
45.    Durgadevi, Indumathi, Gayathri PK. Polymeric Nano Medicine for Cancer Therapy-Review. Research J Engineering and Tech 1013; 4(4): 264-267
46.    Pagar SA. Suryawanshi HK. Nanotechnology- Finding Proofs for Its Ancient Origin. Asian J Res Pharm Sci. 2021; 11(1): 65-70. doi: 10.5958/2231-5659.2021.00011.4
47.    Das MP, Vijaylakshmi JV, Sugunaw JV, Renuka M, Prasad K. Efficient dye decolorization of an azo dye on fish scale hydroxyapatite. Res J Pharm Tech. 2019; 12(6): 2917-21. doi: 10.5958/0974-360X.2019.00491.8
48.    Sanjukta B, Durga B, Bairagi CM. Anticancer Efficacy of β-Sitosterol Loaded Hydroxyapatite-Alginate on Colon Cancer Cell in Vivo. Res J Pharm Tech. 2020; 13(3): 1147-1151. doi: 10.5958/0974-360X.2020.00211.5

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

56th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Recent Articles


Not Available