Author(s):
Yassine Chahirou, Abdelhalem Mesfioui, Mouloud Lamtai, Adil El Midaoui, Samir Bikri, Aboubaker El Hessni
Email(s):
samir.bikri@uit.ac.ma
DOI:
10.52711/0974-360X.2024.00933
Address:
Yassine Chahirou1, Abdelhalem Mesfioui1, Mouloud Lamtai1, Adil El Midaoui2, Samir Bikri1,3, Aboubaker El Hessni1
1Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco.
2Departement of Pharmacology and Physiology, Faculty of Medecine, University of Montreal, Montreal, QC 999040, Canada.
3EDUMED, Planeta Formación y Universidades, Rabat, Morocco.
*Corresponding Author
Published In:
Volume - 17,
Issue - 12,
Year - 2024
ABSTRACT:
Compelling evidence supports the primary role of the diet and metabolic regulation of food intake in the establishment of metabolic diseases. This review describes the hypothalamic and brainstem structures involved in the control of food intake. The arcuate nucleus (AN) is a metabolic relay receiving the metabolic signals from the periphery and projecting to the paraventricular nucleus (PVN) and lateral hypothalamus (LH), which are involved in the sensation of satiety and hunger, respectively. Also, the role of the solitary tract nucleus (STN) in the regulation of food intake is discussed herein. Food intake is not controlled only by the structures associated with the vegetative life but also by structures of hedonism that often incites individuals to consume palatable foods. The emotion towards the food created at the level of the central amygdala (CeA) arrives at the nucleus accumbens (Nacc), which projects to the ventral tegmental area (VTA) in order to increase the production of dopamine that is suppressed by the prefrontal cortex (PFC). This review addresses the intervention of these structures in food intake by evoking the state of addiction to the diet observed in people with obesity.
Cite this article:
Yassine Chahirou, Abdelhalem Mesfioui, Mouloud Lamtai, Adil El Midaoui, Samir Bikri, Aboubaker El Hessni. Obesity: Homeostatic Regulation and Hedonic Aspect of Food Intake. Research Journal Pharmacy and Technology. 2024;17(12):6150-7. doi: 10.52711/0974-360X.2024.00933
Cite(Electronic):
Yassine Chahirou, Abdelhalem Mesfioui, Mouloud Lamtai, Adil El Midaoui, Samir Bikri, Aboubaker El Hessni. Obesity: Homeostatic Regulation and Hedonic Aspect of Food Intake. Research Journal Pharmacy and Technology. 2024;17(12):6150-7. doi: 10.52711/0974-360X.2024.00933 Available on: https://rjptonline.org/AbstractView.aspx?PID=2024-17-12-70
REFERENCES:
1. Alva SS, Joshi H, Gururaja MP, Shama KP, D’souza UP. Anti-Obesity Activity of Vateria indica linn. Stem Bark in Rats. Res J Pharm Technol. 2018; 11(12): 5238. doi:10.5958/0974-360X.2018.00955.1
2. Al Khafaji HT, Abdullah SK, Abdl-Jalil R. Assess Knowledge, Attitude and Practice about Obesity among a Sample of Secondary School Students in Al-karkh District-Baghdad City. Res J Pharm Technol. 2018; 11(4): 1649.doi:10.5958/0974-360X.2018.00307.4
3. Baheerati MM, Devi RG. Obesity in relation to Infertility. Res J Pharm Technol. 2018; 11(7): 3183. doi:10.5958/0974-360X.2018.00585.1
4. Bhattacharya K, Sengupta P, Dutta S, Bhattacharya S. Pathophysiology of obesity: Endocrine, inflammatory and neural regulators. Res J Pharm Technol. 2020; 13(9): 4469. doi:10.5958/0974-360X.2020.00789.1
5. Menon A, Thenmozhi MS. Correlation between thyroid function and obesity. Res J Pharm Technol. 2016; 9(10): 1568. doi:10.5958/0974-360X.2016.00307.3
6. Zambare KK, Kondapure AA, Koumaravelou K, Bumrela SB. A systematic review on obesity and herbal anti-obesity medicines. Res J Pharm Technol. 2020; 13(10): 4966. doi:10.5958/0974-360X.2020.00871.9
7. Ramón-Arbués E, Martínez Abadía B, Granada López JM, et al. Eating behavior and relationships with stress, anxiety, depression and insomnia in university students. Nutr Hosp. Published online 2019. doi:10.20960/nh.02641
8. Allen MS, Robson DA, Laborde S. Normal variations in personality predict eating behavior, oral health, and partial syndrome bulimia nervosa in adolescent girls. Food Sci Nutr. 2020; 8(3): 1423-1432. doi:10.1002/fsn3.1425
9. Bastarrachea RA, Cole SA, Comuzzie AG. Genómica de la regulación del peso corporal: mecanismos moleculares que predisponen a la obesidad. Med Clínica. 2004; 123(3): 104-117. doi:10.1016/S0025-7753(04)74427-9
10. Morton GJ, Cummings DE, Baskin DG, Barsh GS, Schwartz MW. Central nervous system control of food intake and body weight. Nature. 2006; 443(7109): 289-295. doi:10.1038/nature05026
11. Blundell JE, Halford JC. Regulation of nutrient supply: the brain and appetite control. Proc Nutr Soc. 1994; 53(2): 407-418. doi:10.1079/pns19940046
12. E. González-Jiménez y J. Schmidt Río-Valle -. Regulación de la ingesta alimentaria y del balance energético; factores y mecanismos implicados. Nutr Hosp. 2012; (6): 1850-1859. doi:10.3305/nh.2012.27.6.6099
13. Kelley A, Baldo B, Pratt W, Will M. Corticostriatal-hypothalamic circuitry and food motivation: Integration of energy, action and reward. Physiol Behav. 2005; 86(5): 773-795. doi:10.1016/j.physbeh.2005.08.066
14. Dallman MF, Pecoraro NC, la Fleur SE. Chronic stress and comfort foods: self-medication and abdominal obesity. Brain Behav Immun. 2005; 19(4): 275-280. doi:10.1016/j.bbi.2004.11.004
15. Palma JA, Iriarte J. Regulación del apetito: bases neuroendocrinas e implicaciones clínicas. Med Clínica. 2012; 139(2): 70-75. doi:10.1016/j.medcli.2011.11.024
16. Widiger TA, Hines A. The Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition alternative model of personality disorder. Personal Disord. 2022; 13(4): 347-355. doi:10.1037/per0000524
17. Mellinkoff SM, Frankland M, Boyle D, Greipel M. Relationship between serum amino acid concentration and fluctuations in appetite. 1956. Obes Res. 1997; 5(4): 381-384. doi:10.1002/j.1550-8528.1997.tb00568.x
18. Porrini M, Santangelo A, Crovetti R, Riso P, Testolin G, Blundell JE. Weight, protein, fat, and timing of preloads affect food intake. Physiol Behav. 1997; 62(3): 563-570. doi:10.1016/s0031-9384(97)00162-5
19. Bensaïd A, Tomé D, L’Heureux-Bourdon D, et al. A high-protein diet enhances satiety without conditioned taste aversion in the rat. Physiol Behav. 2003; 78(2): 311-320. doi:10.1016/s0031-9384(02)00977-0
20. Oomura Y, Ono T, Ooyama H, Wayner MJ. Glucose and osmosensitive neurones of the rat hypothalamus. Nature. 1969;222(5190):282-284. doi:10.1038/222282a0
21. Routh VH. Glucose sensing neurons in the ventromedial hypothalamus. Sensors. 2010; 10(10): 9002-9025. doi:10.3390/s101009002
22. Leloup C, Orosco M, Serradas P, Nicolaïdis S, Pénicaud L. Specific inhibition of GLUT2 in arcuate nucleus by antisense oligonucleotides suppresses nervous control of insulin secretion. Brain Res Mol Brain Res. 1998; 57(2): 275-280. doi:10.1016/s0169-328x(98)00097-7
23. Yang XJ, Kow LM, Funabashi T, Mobbs CV. Hypothalamic glucose sensor: similarities to and differences from pancreatic beta-cell mechanisms. Diabetes. 1999; 48(9): 1763-1772. doi:10.2337/diabetes.48.9.1763
24. Miki T, Liss B, Minami K, et al. ATP-sensitive K+ channels in the hypothalamus are essential for the maintenance of glucose homeostasis. Nat Neurosci. 2001; 4(5): 507-512. doi:10.1038/87455
25. Wynne K, Stanley S, Bloom S. The gut and regulation of body weight. J Clin Endocrinol Metab. 2004; 89(6): 2576-2582. doi:10.1210/jc.2004-0189
26. Ambad R, Jha RK, Chandi DH, Hadke S. Association of leptin in diabetes mellitus and obesity. Res J Pharm Technol. 2020;13(12):6295-6299. doi:10.5958/0974-360X.2020.01095.1
27. Anugraheni I, Andarini S, Handayani D, Wihastuti TA. Black yeast beta glucan for insulin resistance prevention through IL-33, ST2 and leptin Level: An In vivo study of an obesity model using Sprague dawley rats. Res J Pharm Technol. 2020;13(12): 6077-6080. doi:10.5958/0974-360X.2020.01059.8
28. Al-Ogaidi SO, Abdulsattar SA, Al-Dulaimi HMJ. The Impact of Serum Leptin, Leptin Receptor and Insulin on Maternal Obesity. Res J Pharm Technol. 2019; 12(7): 3569. doi:10.5958/0974-360X.2019.00609.7
29. Cummings DE, Foster-Schubert KE, Overduin J. Ghrelin and energy balance: focus on current controversies. Curr Drug Targets. 2005; 6(2): 153-169. doi:10.2174/1389450053174569
30. Tschöp M, Smiley DL, Heiman ML. Ghrelin induces adiposity in rodents. Nature. 2000; 407(6806): 908-913. doi:10.1038/35038090
31. Arvat E, Maccario M, Di Vito L, et al. Endocrine activities of ghrelin, a natural growth hormone secretagogue (GHS), in humans: comparison and interactions with hexarelin, a nonnatural peptidyl GHS, and GH-releasing hormone. J Clin Endocrinol Metab. 2001; 86(3): 1169-1174. doi:10.1210/jcem.86.3.7314
32. Cowley MA, Smith RG, Diano S, et al. The distribution and mechanism of action of ghrelin in the CNS demonstrates a novel hypothalamic circuit regulating energy homeostasis. Neuron. 2003; 37(4): 649-661. doi:10.1016/s0896-6273(03)00063-1
33. van den Top M, Lee K, Whyment AD, Blanks AM, Spanswick D. Orexigen-sensitive NPY/AgRP pacemaker neurons in the hypothalamic arcuate nucleus. Nat Neurosci. 2004; 7(5): 493-494. doi:10.1038/nn1226
34. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994; 372(6505): 425-432. doi:10.1038/372425a0
35. Burgos-Ramos E, Chowen JA, Argente J, Barrios V. Regional and temporal differences in leptin signaling in rat brain. Gen Comp Endocrinol. 2010; 167(1): 143-152. doi:10.1016/j.ygcen.2010.01.021
36. Ciofi P. The arcuate nucleus as a circumventricular organ in the mouse. Neurosci Lett. 2011; 487(2): 187-190. doi:10.1016/j.neulet.2010.10.019
37. Karnani M, Burdakov D. Multiple hypothalamic circuits sense and regulate glucose levels. Am J Physiol Regul Integr Comp Physiol. 2011; 300(1): R47-55. doi:10.1152/ajpregu.00527.2010
38. De Lecea L, Kilduff TS, Peyron C, et al. The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci U S A. 1998; 95(1): 322-327. doi:10.1073/pnas.95.1.322
39. Qu D, Ludwig DS, Gammeltoft S, et al. A role for melanin-concentrating hormone in the central regulation of feeding behaviour. Nature. 1996; 380(6571): 243-247. doi:10.1038/380243a0
40. Anand BK, Brobeck JR. Localization of a “feeding center” in the hypothalamus of the rat. Proc Soc Exp Biol Med Soc Exp Biol Med N Y N. 1951; 77(2): 323-324. doi:10.3181/00379727-77-18766
41. Satoh N, Ogawa Y, Katsuura G, et al. Pathophysiological significance of the obese gene product, leptin, in ventromedial hypothalamus (VMH)-lesioned rats: evidence for loss of its satiety effect in VMH-lesioned rats. Endocrinology. 1997; 138(3): 947-954. doi:10.1210/endo.138.3.4989
42. Majdic G, Young M, Gomez-Sanchez E, et al. Knockout mice lacking steroidogenic factor 1 are a novel genetic model of hypothalamic obesity. Endocrinology. 2002; 143(2): 607-614. doi:10.1210/endo.143.2.8652
43. Wang C, Bomberg E, Billington CJ, Levine AS, Kotz CM. Brain-derived neurotrophic factor (BDNF) in the hypothalamic ventromedial nucleus increases energy expenditure. Brain Res. 2010; 1336: 66-77. doi:10.1016/j.brainres.2010.04.013
44. Ranjan S, Sharma PK. Association of Brain-Derived Neurotrophic factor (BDNF) gene SNP G196A with Type 2 Diabetes and Obesity: A Meta-Analysis. Res J Pharm Technol. 2017; 10(12): 4297. doi:10.5958/0974-360X.2017.00787.9
45. Rios M, Fan G, Fekete C, et al. Conditional deletion of brain-derived neurotrophic factor in the postnatal brain leads to obesity and hyperactivity. Mol Endocrinol Baltim Md. 2001; 15(10): 1748-1757. doi:10.1210/mend.15.10.0706
46. Aravich PF, Sclafani A. Paraventricular hypothalamic lesions and medial hypothalamic knife cuts produce similar hyperphagia syndromes. Behav Neurosci. 1983; 97(6): 970-983. doi:10.1037//0735-7044.97.6.970
47. Fekete C, Légrádi G, Mihály E, et al. alpha-Melanocyte-stimulating hormone is contained in nerve terminals innervating thyrotropin-releasing hormone-synthesizing neurons in the hypothalamic paraventricular nucleus and prevents fasting-induced suppression of prothyrotropin-releasing hormone gene expression. J Neurosci Off J Soc Neurosci. 2000; 20(4): 1550-1558. doi:10.1523/JNEUROSCI.20-04-01550.2000
48. Shapiro RE, Miselis RR. The central neural connections of the area postrema of the rat. J Comp Neurol. 1985; 234(3): 344-364. doi:10.1002/cne.902340306
49. Huda MSB, Wilding JPH, Pinkney JH. Gut peptides and the regulation of appetite. Obes Rev Off J Int Assoc Study Obes. 2006; 7(2): 163-182. doi:10.1111/j.1467-789X.2006.00245.x
50. Dallaporta M, Himmi T, Perrin J, Orsini JC. Solitary tract nucleus sensitivity to moderate changes in glucose level. Neuroreport. 1999; 10(12): 2657-2660. doi:10.1097/00001756-199908200-00040
51. Hyde TM, Miselis RR. Effects of area postrema/caudal medial nucleus of solitary tract lesions on food intake and body weight. Am J Physiol. 1983; 244(4): R577-587. doi:10.1152/ajpregu.1983.244.4.R577
52. Schwartz GJ. Integrative capacity of the caudal brainstem in the control of food intake. Philos Trans R Soc Lond B Biol Sci. 2006; 361(1471): 1275-1280. doi:10.1098/rstb.2006.1862
53. Rinaman L. Hindbrain noradrenergic lesions attenuate anorexia and alter central cFos expression in rats after gastric viscerosensory stimulation. J Neurosci Off J Soc Neurosci. 2003; 23(31): 10084-10092. doi:10.1523/JNEUROSCI.23-31-10084.2003
54. Kinzig KP, D’Alessio DA, Seeley RJ. The diverse roles of specific GLP-1 receptors in the control of food intake and the response to visceral illness. J Neurosci Off J Soc Neurosci. 2002; 22(23): 10470-10476. doi:10.1523/JNEUROSCI.22-23-10470.2002
55. Palmiter RD. Is dopamine a physiologically relevant mediator of feeding behavior? Trends Neurosci. 2007; 30(8): 375-381. doi:10.1016/j.tins.2007.06.004
56. Berthoud HR. Mind versus metabolism in the control of food intake and energy balance. Physiol Behav. 2004; 81(5): 781-793. doi:10.1016/j.physbeh.2004.04.034
57. Aoun C, Nassar L, Soumi S, El Osta N, Papazian T, Rabbaa Khabbaz L. The Cognitive, Behavioral, and Emotional Aspects of Eating Habits and Association With Impulsivity, Chronotype, Anxiety, and Depression: A Cross-Sectional Study. Front Behav Neurosci. 2019; 13: 204. doi:10.3389/fnbeh.2019.00204
58. Salamone JD, Correa M. Dopamine and food addiction: lexicon badly needed. Biol Psychiatry. 2013; 73(9): e15-24. doi:10.1016/j.biopsych.2012.09.027
59. Baldo BA, Gual-Bonilla L, Sijapati K, Daniel RA, Landry CF, Kelley AE. Activation of a subpopulation of orexin/hypocretin-containing hypothalamic neurons by GABAA receptor-mediated inhibition of the nucleus accumbens shell, but not by exposure to a novel environment. Eur J Neurosci. 2004; 19(2): 376-386. doi:10.1111/j.1460-9568.2004.03093.x
60. Smith KS, Berridge KC, Aldridge JW. Disentangling pleasure from incentive salience and learning signals in brain reward circuitry. Proc Natl Acad Sci U S A. 2011; 108(27): E255-264. doi:10.1073/pnas.1101920108
61. Zacharopoulos G, Lancaster TM, Maio GR, Linden DEJ. The genetics of neuroticism and human values. Genes Brain Behav. 2016; 15(4): 361-366. doi:10.1111/gbb.12286
62. Humphries MD, Prescott TJ. The ventral basal ganglia, a selection mechanism at the crossroads of space, strategy, and reward. Prog Neurobiol. 2010; 90(4): 385-417. doi:10.1016/j.pneurobio.2009.11.003
63. Richard JM, Berridge KC. Prefrontal Cortex Modulates Desire and Dread Generated by Nucleus Accumbens Glutamate Disruption. Biol Psychiatry. 2013; 73(4): 360-370. doi:10.1016/j.biopsych.2012.08.009
64. Stice E, Burger K. Neural vulnerability factors for obesity. Clin Psychol Rev. 2019; 68: 38-53. doi:10.1016/j.cpr.2018.12.002
65. Zhou L, Furuta T, Kaneko T. Chemical organization of projection neurons in the rat accumbens nucleus and olfactory tubercle. Neuroscience. 2003; 120(3): 783-798. doi:10.1016/S0306-4522(03)00326-9
66. Richard JM, Plawecki AM, Berridge KC. Nucleus accumbens GABAergic inhibition generates intense eating and fear that resists environmental retuning and needs no local dopamine. Eur J Neurosci. 2013; 37(11): 1789-1802. doi:10.1111/ejn.12194
67. Fields HL, Margolis EB. Understanding opioid reward. Trends Neurosci. 2015; 38(4): 217-225. doi:10.1016/j.tins.2015.01.002
68. Berridge KC, Kringelbach ML. Pleasure systems in the brain. Neuron. 2015; 86(3): 646-664. doi:10.1016/j.neuron.2015.02.018
69. Castro DC, Berridge KC. Opioid hedonic hotspot in nucleus accumbens shell: mu, delta, and kappa maps for enhancement of sweetness “liking” and “wanting.” J Neurosci Off J Soc Neurosci. 2014; 34(12): 4239-4250. doi:10.1523/JNEUROSCI.4458-13.2014
70. Mahler SV, Smith KS, Berridge KC. Endocannabinoid hedonic hotspot for sensory pleasure: anandamide in nucleus accumbens shell enhances “liking” of a sweet reward. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol. 2007; 32(11): 2267-2278. doi:10.1038/sj.npp.1301376
71. Rolls ET. Brain mechanisms underlying flavour and appetite. Philos Trans R Soc Lond B Biol Sci. 2006; 361(1471): 1123-1136. doi:10.1098/rstb.2006.1852
72. Kelley AE, Baldo BA, Pratt WE. A proposed hypothalamic–thalamic–striatal axis for the integration of energy balance, arousal, and food reward. J Comp Neurol. 2005; 493(1): 72-85. doi:10.1002/cne.20769
73. Ho CY, Berridge KC. An Orexin Hotspot in Ventral Pallidum Amplifies Hedonic ‘Liking’ for Sweetness. Neuropsychopharmacology. 2013; 38(9): 1655-1664. doi:10.1038/npp.2013.62
74. Marcus JN, Aschkenasi CJ, Lee CE, et al. Differential expression of orexin receptors 1 and 2 in the rat brain. J Comp Neurol. 2001; 435(1): 6-25. doi:10.1002/cne.1190
75. Comeras LB, Herzog H, Tasan RO. Neuropeptides at the crossroad of fear and hunger: a special focus on neuropeptide Y. Ann N Y Acad Sci. 2019; 1455(1): 59-80. doi:10.1111/nyas.14179
76. Morrison CD, Morton GJ, Niswender KD, Gelling RW, Schwartz MW. Leptin inhibits hypothalamic Npy and Agrp gene expression via a mechanism that requires phosphatidylinositol 3-OH-kinase signaling. Am J Physiol Endocrinol Metab. 2005; 289(6): E1051-1057. doi:10.1152/ajpendo.00094.2005
77. Elias CF, Lee C, Kelly J, et al. Leptin activates hypothalamic CART neurons projecting to the spinal cord. Neuron. 1998; 21(6): 1375-1385. doi:10.1016/s0896-6273(00)80656-x
78. Bjørbaek C, Uotani S, da Silva B, Flier JS. Divergent signaling capacities of the long and short isoforms of the leptin receptor. J Biol Chem. 1997; 272(51): 32686-32695. doi:10.1074/jbc.272.51.32686
79. Carvalheira JBC, Torsoni MA, Ueno M, et al. Cross-talk between the insulin and leptin signaling systems in rat hypothalamus. Obes Res. 2005; 13(1): 48-57. doi:10.1038/oby.2005.7
80. Berthou F, Rouch C, Gertler A, Gerozissis K, Taouis M. Chronic central leptin infusion differently modulates brain and liver insulin signaling. Mol Cell Endocrinol. 2011; 337(1-2): 89-95. doi:10.1016/j.mce.2011.02.005
81. Berthoud HR. Homeostatic and non-homeostatic pathways involved in the control of food intake and energy balance. Obes Silver Spring Md. 2006; 14 Suppl 5: 197S-200S. doi:10.1038/oby.2006.308
82. Morales I, Berridge KC. “Liking” and “wanting” in eating and food reward: Brain mechanisms and clinical implications. Physiol Behav. 2020; 227: 113152. doi:10.1016/j.physbeh.2020.113152
83. De Araujo IE. Gustatory and homeostatic functions of the rodent parabrachial nucleus. Ann N Y Acad Sci. 2009; 1170: 383-391. doi:10.1111/j.1749-6632.2009.03923.x
84. Negri R, Di Feola M, Di Domenico S, et al. Taste perception and food choices. J Pediatr Gastroenterol Nutr. 2012; 54(5): 624-629. doi:10.1097/MPG.0b013e3182473308
85. Tokita K, Inoue T, Boughter JD. Afferent connections of the parabrachial nucleus in C57BL/6J mice. Neuroscience. 2009; 161(2): 475-488. doi:10.1016/j.neuroscience.2009.03.046
86. Leehr EJ, Krohmer K, Schag K, Dresler T, Zipfel S, Giel KE. Emotion regulation model in binge eating disorder and obesity--a systematic review. Neurosci Biobehav Rev. 2015; 49: 125-134. doi:10.1016/j.neubiorev.2014.12.008
87. Story M, Neumark-Sztainer D, French S. Individual and environmental influences on adolescent eating behaviors. J Am Diet Assoc. 2002; 102(3 Suppl):S40-51. doi:10.1016/s0002-8223(02)90421-9
88. Comings DE, Blum K. Reward deficiency syndrome: genetic aspects of behavioral disorders. Prog Brain Res. 2000; 126: 325-341. doi:10.1016/S0079-6123(00)26022-6
89. Lee Y, Kroemer NB, Oehme L, Beuthien-Baumann B, Goschke T, Smolka MN. Lower dopamine tone in the striatum is associated with higher body mass index. Eur Neuropsychopharmacol J Eur Coll Neuropsychopharmacol. 2018; 28(6): 719-731. doi:10.1016/j.euroneuro.2018.03.009
90. Lutter M, Nestler EJ. Homeostatic and hedonic signals interact in the regulation of food intake. J Nutr. 2009; 139(3): 629-632. doi:10.3945/jn.108.097618
91. Sohn JW. Network of hypothalamic neurons that control appetite. BMB Rep. 2015; 48(4): 229-233. doi:10.5483/bmbrep.2015.48.4.272