Author(s):
Novadri Ayubi, Junian Cahyanto Wibawa, Muhammad Firman Halip, Mohammed Aljunaid
Email(s):
novadriayubi@unesa.ac.id
DOI:
10.52711/0974-360X.2024.00927
Address:
Novadri Ayubi1*, Junian Cahyanto Wibawa2, Muhammad Firman Halip1, Mohammed Aljunaid3
1Universitas Negeri Surabaya, Surabaya, Indonesia.
2STKIP PGRI Trenggalek, Trenggalek, Indonesia.
3Taiz University, Taiz, Yemen.
*Corresponding Author
Published In:
Volume - 17,
Issue - 12,
Year - 2024
ABSTRACT:
This study aims to analyze the effects of exercise on the mass and function of pancreatic beta cells. This type of systematic review research uses searches from journal databases such as Science Direct, Pubmed, and Web of Science. The inclusion criteria for this study are studies that discuss the hormone insulin, pancreatic beta cells, diabetes mellitus, and physical activity published in the last five years (2018-2023). The exclusion criteria for this research are publications published in non-reputable journals or not indexed by Scopus and Web of Science.Article titles, abstracts, and complete texts were vetted, confirmed, and entered into Mendeley software. 10 articles that met the inclusion criteria were selected and analyzed for this systematic review. This systematic review study's findings indicate that enhancing the mass and functionality of pancreatic beta cells led to by physical exercise can increase the sensitivity of the action of the hormone insulin. This has an influence on the maintenance of the pancreas organ, especially beta cells which work to maintain blood glucose balance in the body by secreting the hormone insulin. We recommend that physical exercise be a preventive effort for each individual to maintain the body to care for one of the organs that is very important in blood glucose balance, namely the pancreas by increasing the size and functionality of beta cells in the pancreas. And maintain general body health.
Cite this article:
Novadri Ayubi, Junian Cahyanto Wibawa, Muhammad Firman Halip, Mohammed Aljunaid. Physical Exercise Improve Pancreatic Beta Cell Mass and Function: Systematic Review. Research Journal Pharmacy and Technology. 2024;17(12):6112-7. doi: 10.52711/0974-360X.2024.00927
Cite(Electronic):
Novadri Ayubi, Junian Cahyanto Wibawa, Muhammad Firman Halip, Mohammed Aljunaid. Physical Exercise Improve Pancreatic Beta Cell Mass and Function: Systematic Review. Research Journal Pharmacy and Technology. 2024;17(12):6112-7. doi: 10.52711/0974-360X.2024.00927 Available on: https://rjptonline.org/AbstractView.aspx?PID=2024-17-12-64
REFERENCES:
1. Himani P. Daxaben P. Patel. A Descriptive Study to Assess the Knowledge and Attitude regarding Self Administration of Insulin Injection among Diabetes Mellitus patient in selected Hospital of Visnagar City, in view of Information Booklet. Asian Journal of Nursing Education and Research. 2021; 11(4): 499-2. https://doi.org/10.52711/2349-2996.2021.00119.
2. WangHL. Wang L. Zhao CY. Lan HY. Role of TGF-Beta Signaling in Beta Cell Proliferation and Function in Diabetes. Biomolecules. 2022; 12(3): 1–18. https://doi.org/10.3390/biom12030373.
3. Kaur S. Kaur D. Gupta SR. Skill development regarding self administration of Insulin injection among Diabetes mellitus patients. International Journal of Nursing Education and Research. 2020; 8(4): 440-444. https://doi.org/10.5958/2454-2660.2020.00098.8.
4. Mamatha MK. Suma US. Annegowda HV. The Ascent of Polyherbal Formulation in the Treatment of Diabetes Mellitus. Research Journal of Pharmacognosy and Phytochemistry. 2020; 12(4): 256-260. https://doi.org/10.5958/0975-4385.2020.00042.4.
5. SanyaoluA. MarinkovicA. PrakashS. WilliamsM. DixonY. Okorie C. OrishVN. Izurieta R. Diabetes mellitus: An overview of the types, prevalence, comorbidity, complication, genetics, economic implication, and treatment. World Journal of Meta-Analysis. 2023;11(5): 134–143. https://doi.org/10.13105/wjma.v11.i5.134.
6. LingarajuCMMI. GladM. Venkateshan. The present study was aimed to assess the Knowledge, Attitude and Practice on management of Diabetes among diabetic patients in selected settings of Mysuru. International Journal of Advances in Nursing Management. 2023; 11(1): 66-8. https://doi.org/10.52711/2454-2652.2023.00014.
7. Rorsman P.Ashcroft FM. (2018). Pancreatic β-cell electrical activity and insulin secretion: Of mice and men. Physiological Reviews. 2018; 98(1): 117–214. https://doi.org/10.1152/physrev.00008.2017.
8. Ashcroft FM. Rorsman P. Europe PMC Funders Group Diabetes mellitus and the β -cell : the Last Ten Years. University of Oxford. 2018; 148(6): 1160–1171. https://doi.org/10.1016/j.cell.2012.02.010.Diabetes.
9. Eizirik DL. Pasquali L. Cnop M. Pancreatic β-cells in type 1 and type 2 diabetes mellitus: different pathways to failure. Nature Reviews Endocrinology. 2020; 16(7): 349–362. https://doi.org/10.1038/s41574-020-0355-7.
10. Burgos-MorónE. Abad-JiménezZ. de Marañón AM. Iannantuoni F. Escribano-López I. López-Domènech S. Salom C. Jover A. Mora V. Roldan I. Solá E. Rocha M.Víctor VM. (2019). Relationship between oxidative stress, ER stress, and inflammation in type 2 diabetes: The battle continues. Journal of Clinical Medicine. 2019; 8(9). https://doi.org/10.3390/jcm8091385.
11. Bartolomé A. The Pancreatic Beta Cell: Editorial. Biomolecules. 2023; 13(3): 10–12. https://doi.org/10.3390/biom13030495.
12. Ahrén, B. The Glucose Sensitivity of Insulin Secretion-Lessons from In Vivo and In Vitro Studies in Mice. Biomolecules. 2022; 12(7). https://doi.org/10.3390/biom12070976.
13. Mukai E. Fujimoto S. Inagaki N. Role of Reactive Oxygen Species in Glucose Metabolism Disorder in Diabetic Pancreatic β-Cells. Biomolecules. 2022. 12(9). https://doi.org/10.3390/biom12091228.
14. Latha H. Gifty FVM. A Study to Assess the Effectiveness of Buerger Allen Exercise on Lower Extremity Perfusion among Patients with Type 2 Diabetes Mellitus in selected hospitals at Kanyakumari District. Asian Journal of Nursing Education and Research. 2019; 9(3): 305-311. https://doi.org/10.5958/2349-2996.2019.00066.1.
15. Jenyfer RMW. Tamilselvi S. Christy MV. A Study to Evaluate the Effectiveness of Buerger Allen Exercise on improving lower Extremity perfusion among patients with Type II Diabetes Mellitus in selected Hospitals at Erode. Asian Journal of Nursing Education and Research. 2021; 11(2): 249-252. https://doi.org/10.5958/2349-2996.2021.00059.8.
16. Curran M. Drayson MT. Andrews RC.Zoppi C. Barlow JP. Solomon TPJ. Narendran P. The benefits of physical exercise for the health of the pancreatic β-cell: a review of the evidence. Experimental Physiology. 2020; 105(4): 579–589. https://doi.org/10.1113/EP088220.
17. LegaardGE. Lyngbaek MPP. Almdal TP. KarstoftK. BennetsenSL. Feineis CS. NielsenNS. Durrer CG. LiebetrauB. NystrupU. Østergaard M. Thomsen K. Trinh B. Solomon TPJ. Van Hall G. Brønd JC. Holst JJ. Hartmann B. Christensen R. Ried-LarsenM. Effects of different doses of exercise and diet-induced weight loss on beta-cell function in type 2 diabetes (DOSE-EX): a randomized clinical trial. Nature Metabolism. 2023; 5(5): 880–895. https://doi.org/10.1038/s42255-023-00799-7.
18. Nurdin SM. NugraheniN.WulanM. Moderate Intensity of Physical Exercise increased Β (Beta) Cell and Size of Langerhans Islets in Streptozotocin Induced Diabetes Mellitus Rats. Surabaya Physical Medicine and Rehabilitation Journal. 2019; 1(2): 52. https://doi.org/10.20473/spmrj.v1i2.2019.52-58.
19. BronczekGA. Soares GM. de Barros JF.Vettorazzi JF. Kurauti MA. Marconato-Júnior E. Zangerolamo L. Marmentini C.Boschero AC. Costa-Júnior JM.. Resistance exercise training improves glucose homeostasis by enhancing insulin secretion in C57BL/6 mice. Scientific Reports. 2021; 11(1): 1–11. https://doi.org/10.1038/s41598-021-88105-x.
20. Özdamar M. Erkek OK. Tümkaya S. Ozdamar HÇ. Ozdamar A. Pakyürek H. Ata MT. Şenol H. Toprak EK. Kucukatay ZMB. Examination of the effectiveness of 12-week Nordic Walking exercise in prediabetic individuals. Pamukkale Medical Journal; 2022; 15(2): 285–301. https://doi.org/10.31362/patd.1012513.
21. Coomans De Brachène A. Scoubeau C. Musuaya AE. Maria Costa-JuniorJ. Castela A. Carpentier J. Faoro V. Klass M. Cnop M. EizirikDL. Exercise as a non-pharmacological intervention to protect pancreatic beta cells in individuals with type 1 and type 2 diabetes HRmax Maximal heart rate Pmax Maximal power qRT-PCR Quantitative reverse transcription PCR VICT Vigorous-intensity continuous tr. Diabetologia. 2023; 3(66): 450–460. https://doi.org/10.1007/s00125-022-05837-9.
22. Jensen SBK. Juhl CR. Janus C. Lundgren JR. Martinussen C. Wiingaard C. Knudsen C. Frikke-Schmidt R. Stallknecht BM. HolstJJ. MadsbadS. Torekov SS. Weight loss maintenance with exercise and liraglutide improves glucose tolerance, glucagon response, and beta cell function. Obesity. 2023; 31(4); 977–989. https://doi.org/10.1002/oby.23715.
23. Villaça C. de BP. de Paula CC. de Oliveira CC. Vilas-Boas EA. dos Santos-Silva JC. de OliveiraSF. Abdulkader F. Ferreira SM.Ortis F. (2021). Beneficial effects of physical exercise for β-cell maintenance in a type 1 diabetes mellitus animal model. Experimental Physiology. 2021; 106(7): 1482–1497. https://doi.org/10.1113/EP088872.
24. YuanX.DaiX. Liu L. Hsue C. Miller JD. Fang Z. LiJ. Feng J. Huang Y. Liu C. Shen J. Chen T. Liu Y. Mordes J. Lou Q. Comparing the effects of 6 months aerobic exercise and resistance training on metabolic control and β-cell function in Chinese patients with prediabetes: A multicenter randomized controlled trial. Journal of Diabetes. 2020; 12(1): 25–37. https://doi.org/10.1111/1753-0407.12955.
25. LeiteEA. GomesPRL. Vilas-BoasEA. Munhoz AC. Motta-Teixeira LC. Silva Júnior JS. Carpinelli AR. Cipolla Neto J. A combination of melatonin and moderate-intensity aerobic exercise improves pancreatic beta-cell function and glycemic homeostasis in type 2 diabetic model of animals. Melatonin Research. 2021; 4(3): 479–494. https://doi.org/10.32794/mr112500106.
26. ZhangH. Simpson LK. Carbone NP. Hirshman MF. Nigro P. VamviniM. Goodyear LJ. MiddelbeekRJW. Moderate-intensity endurance training improves late phase β-cell function in adults with type 2 diabetes. IScience. 2023; 26(7): 107226. https://doi.org/10.1016/j.isci.2023.107226.
27. Pritam VG. Effectiveness of Buerger Allen exercise on Lower extremity perfusion among patients with type 2 Diabetes mellitus admitted at selected Hospitals of City. International Journal of Nursing Education and Research. 2021; 9(3): 305-9. https://doi.org/10.52711/2454-2660.2021.00072.
28. HoeneM. Kappler L. KolliparaL. HuC. Irmler M. Bleher D. Hoffmann C. Beckers J. Hrabě de AngelisM. Häring HU.BirkenfeldAL. PeterA. Sickmann A. Xu G. Lehmann R. Weigert C. Exercise prevents fatty liver by modifying the compensatory response of mitochondrial metabolism to excess substrate availability. Molecular Metabolism. 2021; 54(10): 1–17. https://doi.org/10.1016/j.molmet.2021.101359.
29. YaribeygiH. Atkin SL. Simental-Mendía LE. Sahebkar A. Molecular mechanisms by which aerobic exercise induces insulin sensitivity. Journal of Cellular Physiology. 2019; 234(8): 12385–12392. https://doi.org/10.1002/jcp.28066.
30. Khalyfa A. Ericsson A. Qiao Z. Almendros I. Farré R. Gozal D. Circulating exosomes and gut microbiome induced insulin resistance in mice exposed to intermittent hypoxia: Effects of physical activity. EBioMedicine. 2021; 64: 1–15. https://doi.org/10.1016/j.ebiom.2021.103208.
31. Mesinovic J. Zengin A. De Courten B. Ebeling PR. Scott D. Sarcopenia and type 2 diabetes mellitus: A bidirectional relationship. Diabetes, Metabolic Syndrome and Obesity. 2019; 12: 1057–1072. https://doi.org/10.2147/DMSO.S186600.
32. Brandt N. Gunnarsson TP. BangsboJ. Pilegaard H. Exercise and exercise training-induced increase in autophagy markers in human skeletal muscle. Physiological Reports. 2018; 6(7): 1–12. https://doi.org/10.14814/phy2.13651.
33. Dort J. Fabre P. Molina T. Dumont NA. Macrophages Are Key Regulators of Stem Cells during Skeletal Muscle Regeneration and Diseases. Stem Cells International. 2019; Special Issue: 1-21. https://doi.org/10.1155/2019/4761427.
34. Oram RA. Sims EK. Evans-Molina C. Beta cells in type 1 diabetes: mass and function; sleeping or dead? Diabetologia. 2019; 62(4): 567–577. https://doi.org/10.1007/s00125-019-4822-4.
35. Heiskanen MA. Motiani KK. Mari A. Eskelinen JJ. Virtanen KA. LöyttyniemiE. Kalliokoski KK. Hannukainen JC. Exercise training decreases pancreatic fat content and improves beta cell function regardless of baseline glucose tolerance: a randomised controlled trial. Diabetologia. 2019; 62(1): 204–206. https://doi.org/10.1007/s00125-018-4762-4.
36. Estrada-MarcénNC. Casterad-SeralJ. Montero-MarinJ. Serrano-Ostáriz E. Can an Aerobic Exercise Programme Improve the Response of the Growth Hormone in Fibromyalgia Patients? A Randomised Controlled Trial. International Journal of Environmental Research and Public Health. 2023; 20(3). 2261. https://doi.org/10.3390/ijerph20032261.
37. SwarbrickMM. CoxCL. GrahamJL. KnudsenLB. StanhopeK. RaunK. Havel PJ. Growth hormone treatment does not augment the anti-diabetic effects of liraglutide in UCD-T2DM rats. Endocrinology, Diabetes and Metabolism. 2023; 6(1): 1–13. https://doi.org/10.1002/edm2.392.
38. XuG. ChenJ. LuB. Sethupathy P. Qian WJ. Shalev A. Verapamil Prevents Decline of IGF-I in Subjects With Type 1 Diabetes and Promotes b-Cell IGF-I Signaling. Diabetes. 2023; 72(10): 1460–1469. https://doi.org/10.2337/db23-0256.
39. CastellAL. Goubault C. EthierM. Fergusson G. Tremblay C. Baltz M. Dal Soglio D. Ghislain J. Poitout V. β Cell mass expansion during puberty involves serotonin signaling and determines glucose homeostasis in adulthood. JCI Insight. 2022; 7(21): e160854. https://doi.org/10.1172/jci.insight.160854
40. KimaniCN. Reuter H. Kotzé SH. Muller CJF. Regeneration of Pancreatic Beta Cells by Modulation of Molecular Targets Using Plant-Derived Compounds: Pharmacological Mechanisms and Clinical Potential. Current Issues in Molecular Biology. 2023; 45(8), 6216–6245. https://doi.org/10.3390/cimb45080392.
41. JasimHS. Study of growth Hormone Response to Clonidine Stimulation in short stature with Growth Hormone Deficiency (GHD). Research Journal of Pharmacy and Technology. 2019; 12(5): 2356-2358. https://doi.org/10.5958/0974-360X.2019.00394.9.
42. EguchiN. VaziriND. DafoeDC.IchiiH. The role of oxidative stress in pancreatic β cell dysfunction in diabetes. International Journal of Molecular Sciences. 2021; 22(4): 1–18. https://doi.org/10.3390/ijms22041509.
43. RidhaMF. Growth Dynamics following Growth hormone treatment in group of Iraqi patients with Turner’s Syndrome. Research Journal of Pharmacy and Technology. 2022; 15(4): 1610-3. https://doi.org/10.52711/0974-360X.2022.00269.
44. PrahasantiC. Perdana S. The Roles of Insulin Growth Factors-1 (IGF-1) in Bone Graft to increase Osteogenesis. Research Journal of Pharmacy and Technology. 2022; 15(4): 1737-2. https://doi.org/10.52711/0974-360X.2022.00291.
45. SabagA. ChangD. JohnsonNA. Growth Hormone as a Potential Mediator of Aerobic Exercise-Induced Reductions in Visceral Adipose Tissue. Frontiers in Physiology. 2021; 12(4): 1–6. https://doi.org/10.3389/fphys.2021.623570.