Author(s):
Dewi Sinta Megawati, Juni Ekowati, Siswandono Siswodihardjo, A. Ghanaim Fasya
Email(s):
juni-e@ff.unair.ac.id
DOI:
10.52711/0974-360X.2024.00919
Address:
Dewi Sinta Megawati1,2, Juni Ekowati3,4*, Siswandono Siswodihardjo3,4,5, A. Ghanaim Fasya6
1Doctoral Program of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya-60115, (East Java) Indonesia.
2Department of Pharmacy, Faculty of Medicine and Health Sciences, Maulana Malik Ibrahim State Islamic University, Malang-65144, (East Java) Indonesia.
3Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya-60115, (East Java) Indonesia.
4Drug Development Research Group, Faculty of Pharmacy, Universitas Airlangga, Surabaya-60115, (East Java) Indonesia.
5Faculty of Pharmacy, Bhakti Wiyata Institute of Health Sciences, Kediri-64114, (East Java) Indonesia.
6Department of Chemistry, Faculty of Science and Technology, Maulana Malik Ibrahim State Islamic University, Malang-65144, (East Java) Indonesia.
*Corresponding Author
Published In:
Volume - 17,
Issue - 12,
Year - 2024
ABSTRACT:
Oxidative stress occurs when the body accumulates reactive oxygen species (ROS), which can be generated through enzymatic reactions or when oxygen interacts with cellular molecules. Antioxidants are frequently employed to impede, postpone, or minimize oxidative stress within the human body. These antioxidants supply electrons to free radicals, thereby counterbalancing their harmful effects. Compounds containing thiourea groups have attracted attention due to their diverse pharmaceutical properties, including their roles as antioxidants. This study aims to determine the antioxidant potential of the N-benzoyl-N’-naphthylthiourea (BNTU) and its four derivatives. This research evaluates the antioxidant activity of BNTU and its derivatives using the scavenging method of DPPH radicals. A docking study revealed potential interactions between binding models (human ROS1 kinase, PDB ID 3ZBF) and the antioxidant properties of the target compounds. Based on the results of the DPPH test, it was found that the antioxidant activity (IC50) for 4CFBNTU was recorded at 189.6 ppm, whereas 3CFBNTU showed a measurement of 294.5 ppm. Conversely, BNTU, 4TBBNTU, and 4OCBNTU displayed IC50 values surpassing 400 ppm. As for the Antioxidant Activity Index (AAI), The BNTU and its derivatives have AAI values < 0.56. The docking results obtained are consistent with the conclusions drawn from the antioxidant investigation. The four derivatives of BNTU have better antioxidant activity than the lead compound. Among them, 4CFBNTU exhibits the best antioxidant activity, although its antioxidant properties are relatively weak.
Cite this article:
Dewi Sinta Megawati, Juni Ekowati, Siswandono Siswodihardjo, A. Ghanaim Fasya. Antioxidant Activities and Molecular Docking of N-benzoyl-N’-naphthylthiourea Derivatives. Research Journal Pharmacy and Technology. 2024;17(12):6063-9. doi: 10.52711/0974-360X.2024.00919
Cite(Electronic):
Dewi Sinta Megawati, Juni Ekowati, Siswandono Siswodihardjo, A. Ghanaim Fasya. Antioxidant Activities and Molecular Docking of N-benzoyl-N’-naphthylthiourea Derivatives. Research Journal Pharmacy and Technology. 2024;17(12):6063-9. doi: 10.52711/0974-360X.2024.00919 Available on: https://rjptonline.org/AbstractView.aspx?PID=2024-17-12-56
REFERENCES:
1 Al-Salahi R, Taie HAA, Bakheit AH, Marzouk M, Almehizia AA, Herqash R et al. Antioxidant activities and molecular docking of 2-thioxobenzo[g]quinazoline derivatives. Pharmacol Reports. 2019; 71: 695–700. doi: 10.1016/j.pharep.2019.04.003
2 Pisoschi AM, Pop A, Iordache F, Stanca L, Predoi G, Serban AI. Oxidative stress mitigation by antioxidants - An overview on their chemistry and influences on health status. Eur J Med Chem. 2021; 209: 112891. doi: 10.1016/j.ejmech.2020.112891
3 Tan BL, Norhaizan ME, Liew WPP, Rahman HS. Antioxidant and oxidative stress: A mutual interplay in age-related diseases. Front Pharmacol. 2018; 9: 1162. doi: 10.3389/fphar.2018.01162
4 Saha D, Tamrakar A. Xenobiotics, Oxidative Stress, Free Radicals Vs. Antioxidants: Dance Of Death to Heaven’s Life. Asian J Res Pharm Sci. 2011; 1: 36–38.
5 Muthukumaran P, Salomi S, Umamaheshwari R. In vitro antioxidant activity of Premna serratifolia Linn. Asian J Res Pharm Sci. 2013; 3: 15–18.
6 Bollinger A, Brandt ON, Stettler LD, Ream A, Kopysciansky VT, Nelson CA et al. Sulfide-linked 3,4,5-trimethoxyphenyl-thiosemicarbazide/triazole hybrids: Synthesis, antioxidant, antiglycation, DNA cleavage and DNA molecular docking studies. Results Chem. 2023; 5: 0–6. doi:10.1016/j.rechem.2023.100806
7 Prakash CR, Saravanan G, Raja S, Kumar PD, Selvam TP. Synthesis and evaluation of antioxidant activities of some novel isatin derivatives and analogs. Asian J Res Pharm Sci. 2011; 1: 140–143.
8 Patel RN, Patel UY, Sen DJ. Polyphenol antioxidants of green tea as free radical scavengers in green heart nanotechnology. Res J Sci Technol. 2010; 2: 89–94.
9 Aitha S, Thumma V, Matta R, Ambala S, Jyothi K, Manda S et al. Antioxidant activity of novel 4H- chromene tethered 1,2,3-Triazole Analogues: Synthesis and molecular docking studies. Results Chem. 2023; 5: 1–8. doi: 10.1016/j.rechem.2023.100987
10 Malathi R, John SA, Cholarajan A. Antioxidant activity of extract from the leaves of Tylophora asthmatica. Asian J Res Pharm Sci. 2012; 2: 80–82.
11 Ali KWR, Mayur C, Mansi G. A Study on phytochemical and antioxidant properties of the leaves of Ficus hispida Linn. Res J Pharmacogn Phytochem. 2023; 15: 203–208.
12 Sadhu SP, Pragada RR, Konduri P, Yarla NS. Anticancer, Antioxidant Activity and Molecular Docking Studies of Saccharumoside-B. Res J Pharm Technol. 2023; 16: 608–614.
13 Huang RZ, Zhang B, Huang XC, Liang G Bin, Qin JM, Pan YM et al. Synthesis and biological evaluation of terminal functionalized thiourea-containing dipeptides as antitumor agents. RSC Adv 2017; 7: 8866–8878. doi: 10.1039/C6RA25590F
14 Widiandani T, Siswandono, Meiyanto E, Sulistyowaty MI, Purwanto BT, Hardjono S. New N-allylthiourea derivatives: synthesis, molecular docking and in vitro cytotoxicity studies. Trop J Pharm Res. 2018; 17: 1607–1613.
15 Liu S, Louie MC, Rajagopalan V, Zhou G, Ponce E, Nguyen T et al. Synthesis and evaluation of the diarylthiourea analogs as novel anti-cancer agents. Bioorganic Med Chem Lett 2015; 25: 1301–1305. doi: 10.1016/j.bmcl.2015.01.042
16 Kesuma D, Nasyanka AL, Rudyanto M, Siswandono, Purwanto BT, Sumartha IGA. A prospective modification structure: the effect of lipophilic and electronic properties of N-(phenylcarbamothyoil)benzamide derivatives on cytotoxic activity by in silico and in vitro assay with T47D cells. Rasayan J Chem 2020; 13: 1914–1918. doi: 10.31788/RJC.2020.1335694
17 Widiandani T, Siswandono, Meiyanto E. Anticancer evaluation of N-benzoyl-3-allylthiourea as potential antibreast cancer agent through enhances HER-2 expression. J Adv Pharm Technol Res. 2020; 11: 163–168. doi: 10.4103/japtr.JAPTR_77_20
18 Ahmed A, Shafique I, Saeed A, Shabir G, Saleem A, Taslimi P et al. Nimesulide linked acyl thioureas potent carbonic anhydrase I, II and α-glucosidase inhibitors: Design, synthesis and molecular docking studies. Eur J Med Chem Reports. 2022; 6: 1–12. doi: 10.1016/j.ejmcr.2022.100082
19 Maryoosh AA, Al-Jeilawi OHR. Synthesis, Identification, Antioxidant, Molecular Docking, and In Silico ADME Study for Some New Derivatives Containing Thiourea Moiety. Russ J Bioorganic Chem. 2024; 50: 170–180. doi: 10.1134/S1068162024010084
20 Pingaew R, Prachayasittikul V, Anuwongcharoen N, Prachayasittikul S, Ruchirawat S, Prachayasittikul V. Synthesis and molecular docking of N,N′-disubstituted thiourea derivatives as novel aromatase inhibitors. Bioorg Chem. 2018; 79: 171–178. doi: 10.1016/j.bioorg.2018.05.002
21 Kirishnamaline G, Magdaline JD, Chithambarathanu T, Aruldhas D, Anuf AR. Theoretical investigation of structure, anticancer activity and molecular docking of thiourea derivatives. J Mol Struct. 2021; 1225: 129118. doi:10.1016/j.molstruc.2020.129118
22 Huong DQ, Bay M Van, Nam PC. Antioxidant activity of thiourea derivatives: An experimental and theoretical study. J Mol Liq. 2021; 340: 117149. doi: 10.1016/j.molliq.2021.117149
23 Oleiwi AQ, Al-Jeilawi OHR, Dayl SA. Synthesis, Characterization of Some Thiourea Derivatives Based on 4- Methoxybenzoyl Chloride as Antioxidants and Study of Molecular Docking. Iraqi J Sci. 2023; 64: 1–12. doi: 10.24996/ijs.2023.64.1.1
24 Sudzhaev AR, Rzaeva IA, Nadzhafova RA, Safarov YS, Allakhverdiev MA. Antioxidant properties of some thiourea derivatives. Russ J Appl Chem. 2011; 84: 1394–1397. doi: 10.1134/S1070427211080167
25 Haque A, Khan MWA, Alenezi KM, Soury R, Khan MS, Ahamad S et al. Synthesis, Characterization, Antiglycation Evaluation, Molecular Docking, and ADMET Studies of 4-Thiazolidinone Derivatives. ACS Omega. 2024; 9: 1810–1820. doi: 10.1021/acsomega.3c08463
26 Megawati DS, Fasya AG, Pratiwi RA, Maghfiroh N. Pharmacology potency of thin layer chromatography steroid isolates of Chlorella sp. chloroform fraction. In: IOP Conference Series: Earth and Environmental Science. 2020, p 012012. doi: 10.1088/1755-1315/456/1/012012
27 Fasya AG, Baderos A, Madjid ADR, Amalia S, Megawati DS. Isolation, identification and bioactivity of steroids compounds from red algae Eucheuma cottonii petroleum ether fraction. In: AIP Conference Proceedings. 2019 doi:10.1063/1.5115629.
28 Salama ZA, Aboul-Enein AM, Gaafar AA, Asker MS, Aly HF, Ahmed HA. In-vitro antioxidant, antimicrobial and anticancer activities of Banana leaves (Musa acuminata) and olive leaves (olea europaea l.) as by-products. Res J Pharm Technol. 2020; 13: 687–696. doi: 10.5958/0974-360X.2020.00132.8
29 Scherer R, Godoy HT. Antioxidant activity index (AAI) by the 2,2-diphenyl-1-picrylhydrazyl method. Food Chem 2009; 112: 654–658. doi: 10.1016/j.foodchem.2008.06.026
30 Vasić SM, Stefanovic OD, Ličina BZ, Radojević ID, Comic LR. Biological activities of extracts from cultivated granadilla Passiflora alata. EXCLI J 2012; 11: 208–218. PMID: 27385958
31 Megawati DS, Ekowati J, Siswandono S. Quantitative Structure-Activity Relationship (QSAR) of N-Benzoyl-N’-Naphtylthiourea Derivative Compounds by in Silico as Anticancer Through Inhibition of VEGFR2 Receptors. In: Proceedings of the 12th International Conference on Green Technology (ICGT 2022). Atlantis Press International BV, 2023, pp 137–148. doi: 10.2991/978-94-6463-148-7_15
32 Indratmoko S, Nurani LH, Wahyuningsih I, Murti TD, Setiyabudi L. Effectiveness of Active Compounds of Herbal Plants as Aphrodisiacs Through Molecular Docking Against Human Phosphodiesterase-5 Receptors. J Penelit Pendidik IPA. 2023; 9: 2047–2054. doi: 10.29303/jppipa.v9i4.3137
33 Megawati DS, Ekowati J, Siswodihardjo S, Fasya AG. In Silico study of the effect of substituents on the structure of N-benzoyl-N’-naphthylthiourea as anti-breast cancer HER-2 positive candidates. J Med Pharm Chem Res. 2023; 5: 1077–1088. doi: 10.48309/jmpcr.2023.181527
34 Fasya AG, Millati N, Rahmawati LM, Iyani R, Hanapi A, Ningsih R et al. Isolation and bioactivity of steroids isolates from petroleum ether fraction of Chlorella sp. In: AIP Conference Proceedings. 2020 doi:10.1063/5.0001490.
35 Legiawati L, Fadilah F, Bramono K, Pratama AI. In Silico Study of Centella asiatica Derivatives as Antioxidant: Enhancer of Superoxide Dismutase and Glutathione Peroxidase Activity. Res J Pharm Technol. 2023; 16: 399–403. doi: 10.52711/0974-360X.2023.00068
36 Pratama MRF, Praditapuspa EN, Kesuma D, Poerwono H, Widiandani T, Siswodihardjo S. Boesenbergia Pandurata as an Anti-Breast Cancer Agent: Molecular Docking and ADMET Study. Lett Drug Des Discov. 2022; 19: 606–626. doi: 10.2174/1570180819666211220111245
37 Pratama MRF, Poerwono H, Siswodihardjo S. Molecular docking of novel 5- O -benzoylpinostrobin derivatives as wild type and L858R/T790M/ V948R mutant EGFR inhibitor. J Basic Clin Physiol Pharmacol. 2019; : 1–11. doi: 10.1515/jbcpp-2019-0301
38 Dubey SK, Batra A. Study of anti oxidant and anti-inflammatory activity from ethanol fraction of Thuja occidentalis Linn. Res J Sci Technol. 2009; 1: 39–42.
39 Vaghela JS, Sisodia SS. In vitro antioxidant activity of Terminalia chebula fruit extracts. Res J Pharm Technol. 2011; 4: 1835–1843. PID=2011-4-12-2
40 Roy A, Bhoumik D, Sahu RK, Dwivedi J. Phytochemical screening and antioxidant activity of Sesbania grandiflora Leaves Extracts. Asian J Res Pharm Sci. 2014; 4: 16–21.
41 Amirah S, Mohd Zain HH, Husni I, Kassim NK, Amin I. In vitro antioxidant capacity of peperomia pellucida (L.) kunth plant from two different locations in malaysia using different solvents extraction. Res J Pharm Technol. 2020; 13: 1767–1773. doi: 10.5958/0974-360X.2020.00319.4
42 Sudhamani H, Syam Prasad G, Venkataramaiah C, Raju CN, Rajendra W. In silico and in vitro antioxidant activity profiles of urea and thiourea derivatives of 5-hydroxytryptophan. J Recept Signal Transduct. 2019; 39: 373–381. doi: 10.1080/10799893.2019.1683864
43 Fasya AG, Warsito, Iftitah ED, Rollando. Molecular Docking of Selected Phytosterol from Hydrilla verticillata on Estrogen Receptors as Candidates of Anti-breast Cancer. In: Proceedings of the 12th International Conference on Green Technology. (ICGT 2022). Atlantis Press International BV, 2023, pp 304–311. doi: 10.2991/978-94-6463-148-7_30