Author(s): Dina E. El-Ghwas, Amr A. El-Waseif

Email(s): amrelwaseif@azhar.edu.eg

DOI: 10.52711/0974-360X.2024.00918   

Address: Dina E. El-Ghwas1, Amr A. El-Waseif2*
1Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries Institute, National Research Centre, Dokki, Giza, Egypt 12622.
2Botany and Microbiology Dept, Faculty of Science (Boys), Al-Azhar University, Cairo, Egypt.
*Corresponding Author

Published In:   Volume - 17,      Issue - 12,     Year - 2024


ABSTRACT:
Bacterial cellulose (BC) has distinctive structural, physical, functional, and chemical characteristics. Recently, there has been growing interest in mass-producing BC for industrial uses to achieve greater cost-effectiveness and productivity in cellulose synthesis. This study aimed to enhance the productivity of BC by utilizing the Plackett-Burman Design to determine the optimal media composition and Taguchi's design for optimizing the culture parameters by Gluconacetobacter xylinus NRRL B-469. The impact of eleven cultural components on BC production was assessed using the Plackett-Burman Design. The results indicated that the variables with the greatest influence on BC production were Mannitol at a concentration of 25 g/L, H2SO4–heat-treated molasses at 110 ml, CSL at 80 ml, Citric acid at 1.15 g/L, and Na2HPO4 at 2.7 g/L. These optimal medium compositions resulted in a higher BC yield of 9.5 g/l. Furthermore, Taguchi's design accurately forecasted a yield almost double that of BC (18.04 g/l) under ideal production circumstances. The composition of the solution is as follows: Mannitol 25 g/L, H2SO4–heat-treated molasses 110 mL, CSL is 120 mL, citric acid 0.5 g/L, Na2HPO4 5 g/L. The total volume of the solution is 100 mL. The incubation period is 246 hours. The pH level is 5 and the temperature is maintained at 30oC. Additionally, the dried BC membrane was characterised using Scanning Electron Microscopy to establish its morphological structure and purity, X-ray Diffraction to assess its crystallinity, and FT-IR to analyse its chemical structure and functional groups. BC has fibrils that are somewhat thinner and have a more condensed structure, ranging from 73.9 to 161.0 nm. The utilization of experimental techniques, such as the Taguchi method and Plackett–Burman design, can serve as a valuable means to enhance the synthesis of bacterial cellulose pellicle. That could be serve as a promising material for specific applications.


Cite this article:
Dina E. El-Ghwas, Amr A. El-Waseif. Multifactorial Optimization and Characterization of Bacterial Cellulose by Plackett-Burman and Taguchi Designs. Research Journal Pharmacy and Technology. 2024;17(12):6050-2. doi: 10.52711/0974-360X.2024.00918

Cite(Electronic):
Dina E. El-Ghwas, Amr A. El-Waseif. Multifactorial Optimization and Characterization of Bacterial Cellulose by Plackett-Burman and Taguchi Designs. Research Journal Pharmacy and Technology. 2024;17(12):6050-2. doi: 10.52711/0974-360X.2024.00918   Available on: https://rjptonline.org/AbstractView.aspx?PID=2024-17-12-55


REFERENCES:
1.    Liu Y, Ahmed S, Sameen DE, Wang Y, Lu R, Dai J, Li S, Qin W. A review of cellulose and its derivatives in biopolymer-based for food packaging application. Trends in Food Science & Technology. 2021; 112: 532–546. Doi.org/10.1016/J.TIFS.2021.04.016
2.    LyndLR, Weimer PJ, Van ZylWH, Pretorius IS. Microbial cellulose utilization: Fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 2002; 66: 506–577. DOI: 10.1128/MMBR.66.3.506-577.2002  
3.    Shoda M, Sugano Y. Recent advances in bacterial cellulose production, BiotechnolBioproc. E. 2005; 10(1): 1-8. Doi.org/10.1007/BF02931175
4.    Maany DA, El-Waseif AA, Abdelall MF. Elusive function of dental plaque polysaccharide produced from Kocuriarosae and its molecular signature. Egyptian Pharmaceutical Journal. 2019; 181: 60-67.‏
5.    El-Waseif AA, Abobaker RA, Abdel-Monem MO, Attia AA, Hassan MG. The Lactobacillus brevis Prebiotic Pure Exo polysaccharide and its Nano crystalline Characterization, anti-colon cancer and cytotoxicity. Research Journal of Pharmacy and Technology. 2021; 14(11): 5998-6002.‏ DOI:10.52711/0974-360X.2021.01042
6.    Elhalabi HM, El-Waseif AA, El-Ghwas DE. Assessment of Anti-inflammatory, Antimicrobial and Cytotoxicity of Chitosan-Moringa Composite and Calcium Hydroxide Nanoparticles as an intra-canal medicament in vitro. Research Journal of Pharmacy and Technology. 2024; 17(2), 776-788. DOI:10.52711/0974-360X.2024.00121
7.    Huang Y, Zhu C, Yang J, Nie Y, Chen C. Dongping Sun Recent advances in bacterial cellulose. Cellulose. 2014; 21 (1): 1–30 DOI:10.1007/s10570-013-0088-z
8.    Santos RACD, Berretta AA, BarudHDS, RibeiroSJL, González-García LN, Zucchi TD, Goldman GH, Riaño-Pachón DM. Draft genome sequence of Komagataeibacterrhaeticus strain AF1, a high producer of cellulose, isolated from Kombucha tea. Genome Announc. 2014; 2 (4): e00731-14. Doi: 10.1128/genomeA.00731-14
9.    Brown AJ. XIX. —The chemical action of pure cultivations of bacterium aceti. J. Chem. Soc. Trans. 1886; 49:172–187. Doi.org/10.1039/CT8864900172
10.    Dubey S, Sharma RK, Agarwal P, Singh J, Sinha N, Singh RP. From rotten grapes to industrial exploitation: Komagataeibactereuropaeus SGP37, a micro-factory for macroscale production of bacterial nanocellulose. Int. J. Bio. Macromol. 2017; 96: 52–60. Doi.org/10.1016/j.ijbiomac.2016.12.016
11.    Du R, Zhao F, Peng Q, Zhou Z, Han Y. Production and characterization of bacterial cellulose produced by Gluconacetobacterxylinus isolated from Chinese persimmon vinegar. Carbohydr. Polym. 2018; 194: 200–207. Doi: 10.1016/j.carbpol.2018.04.041.
12.    Al-Janabi SS, Shawky H, El-Waseif AA, Farrag AA, Abdelghany TM, El-Ghwas DE. Novel approach of amplification and cloning of bacterial cellulose synthesis (bcs) operon from Gluconoacetobacterhansenii. Gene Reports. 2022a; 27:1-8.‏DOI: 10.1016/j.genrep.
13.    Al-Janabi SS, Shawky H, El-Waseif AA, Farrag AA, Abdelghany TM, El-Ghwas DE. Stable, efficient, and cost-effective system for the biosynthesis of recombinant bacterial cellulose in Escherichia coliDH5α platform. Journal of Genetic Engineering and Biotechnology. 2022; 20(1): 1-10. Doi.org/10.1186/s43141-022-00384-7
14.    Shi Z, Zhang Y, Phillips GO, Yang G. Utilization of bacterial cellulose in food. Food Hydrocoll. 2014; 35: 539-545. Doi.org/10.1016/j.foodhyd.2013.07.012
15.    Müller D, Mandelli J, Marins J, Soares B, Porto L, Rambo C, Barra G. Electrically conducting nanocomposites: preparation and properties of polyaniline (PAni)-coated bacterial cellulose nanofibers (BC). Cellulose. 2012; 19(5): 1645-1654 DOI:10.1007/s10570-012-9754-9
16.    Kingkaew J, Kirdponpattara S, Sanchavanakit N, Pavasant P, Phisalaphong M. Effect of molecular weight of chitosan on antimicrobial properties and tissue compatibility of chitosan impregnated bacterial cellulose films, E BiotechnolBioproc E. 2014; 19(3): 534-544. DOI: org/10.1007/s12257-014-0081-x
17.    Spence KL, Venditti RA, Rojas OJ, Habibi Y, PawlakJJ. The effect of chemical composition on microfibrillar cellulose films from wood pulps: water interactions and physical properties for packaging applications, Cellulose. 2010; 17(4): 835-848. DOI:10.1007/s10570-010-9424-8
18.    Scherner M, Reutter S, Klemm D, Sterner- Kock A, Guschlbauer M, Richter T, Langebartels G, Madershahian N, Wahlers T, Wippermann J. In vivo application of tissue engineered blood vessels of bacterial cellulose as small arterial substitutes: proof of concept, J Surg Res. 2014; 189(2): 340-347. Doi: 10.1016/j.jss.2014.02.011
19.    Kawaguchi I, Nakamura K. Make-up tissue paper for removing cosmetics, comprises glycerine impregnated into a tissue paper which consists of pulp fibre, and bacterial cellulose entangled in the pulp interfere forming a network structure. In.: JP2009077752-A. 2007.
20.    Palaninathan V, Chauhan N, Poulose AC, Raveendran S, Mizuki T, Hasumura T, Fukuda T, Morimoto H, Yoshida Y, Maekawa T. Acetosulfation of bacterial cellulose: An unexplored promising incipient candidate for highly transparent thin film, Mater Express. 2014; 4(5): 415-421.  DOI:10.1166/mex.2014.1191
21.    GallegosAMA, Carrera SH, Parra R, Keshavarz T, IqbalHMN. Bacterial Cellulose: A Sustainable Source to Develop Value-Added Products—A Review. Bio. Resources 2016; 11: 5641–5655. Doi.org/10.15376/biores.11.2.Gallegos
22.    Zahan KA, Nordin K, Mustapha M, ZairiMNM. Effect of Incubation Temperature on Growth of Acetobacterxylinum 0416 and Bacterial Cellulose Production, ApplMech Mater. 2015; 815: 3-8. Doi.org/10.4028/www.scientific.net/AMM.815.3
23.    YatsyshynVY, Fedorovych DV, SibirnyAА. Medium optimization for production of flavin mononucleotide by the recombinant strain of the yeast Candida famata using statistical designs, Biochem. Eng. J. 2010; 49(1): 52-60. DOI: 10.1016/j.bej.2009.11.010
24.    PlackettRL, Burman JP. The design of optimum multifactorial experiments, Biometrika. 1946; 305-325. Doi.org/10.2307/2332195
25.    Box GE, BehnkenDW. Some new three level designs for the study of quantitative variables, Technometrics. 1960; 2(4): 455 – 475. Doi.org/10.1080/00401706.1960.10489912
26.    Bae S, Shoda M. Statistical optimization of culture conditions for bacterial cellulose production using Box Behnken design, BiotechnolBioeng. 2005; 90(1): 20-28. Doi: 10.1002/bit.20325.
27.    Naveena B, Altaf M, Bhadriah K, Reddy G. Selection of medium components by Plackett–Burman design for production of L (+) lactic acid by Lactobacillus amylophilus GV6 in SSF using wheat bran. Bioresour. Technol. 2005; 96(4): 485-490. Doi: 10.1016/j.biortech.2004.05.020.
28.    Embuscado ME, Marks JS, BeMiller JN. Bacterial cellulose. II. Optimization of cellulose production by Acetobacterxylinum through response surface methodology. Food Hydrocoll. 1994; 8(5): 419-430. Doi.org/10.1016/S0268-005X (09)80085-4
29.    El-WaseifA A, El-Ghwas DE. Involving the silver particles into microbial membrane to improve the biological activity and characterization. International Journal of Pharm. Tech. Research. 2016; 9(5): 16-22.‏
30.    El-WaseifA A, El-Ghwas DE. Anti-breast cancer and cytotoxicity of nano materials formed bacterial cellulose-ZnO-Ag composite. Materials Today: Proceedings. 2022; 60:1651-1655.‏DOI:10.2139/ssrn.3881621
31.    El-Waseif AA, Alshehrei F, Al-Ghamdi SB, El-Ghwas DE. Antioxidant and Anticoagulant Activity of Microbial Nano Cellulose-ZnO-Ag Composite Components. Pakistan Journal of Biological Sciences. 2022a; 25(6): 531-536. ‏DOI: 10.3923/pjbs.2022.531.536
32.    Oikawa T, Ohtori T, Ameyama M. Production of cellulose from d-mannitol by Acetobacterxylinum. KU-1. Biosci. Biotech. Biochem. 1995; 59(2): 331-332. DOI: 10.1271/bbb.59.331
33.    El-Saied H, El-Diwany AI, Basta AH, Atwa NA, El-Ghwas DE. Production and characterization of economical bacterial cellulose," BioResources. 2008; 3(4): 1196-1217.
34.    El-Ghwas DE, MazeedTE, El-Waseif A, Al-Zahrani HA, Almaghrabi OA, Elazzazy AM. Factorial experimental design for optimization of zinc oxide nanoparticles production. Current Nanoscience. 2020; 16(1): 51-61.‏ DOI:10.2174/1573413715666190618103127
35.    Qadah AM, El-Waseif AA, Yehia H. Novel use of probiotic as acetylcholine esterase inhibitor and a new strategy for activity optimization as a biotherapeutic agent. Journal of Applied Biology and Biotechnology. 2023; 11(6): 202-215. ‏DOI: 10.7324/JABB.2023.141954
36.    El-Waseif AA, Roshdy TY, Abdel-Monem MO, Hassan MG. Taguchi design Analysis for optimization of probiotics cholesterol assimilation. Materials Today: Proceedings. 2022b; 61: 1154-1157.‏ DOI: 10.1016/j.matpr.2021.12.137
37.    Atykyan N, Revin V, Shutova V. Raman. and FT-IR Spectroscopy investigation the cellulose structural differences from bacteria Gluconacetobactersucrofermentans during the different regimes of cultivation on a molasses media. AMBExpr. 2020; 10, 84. Doi.org/10.1186/s13568-020-01020-8
38.    Bandyopadhyay S, Saha N, Saha P. Characterization of bacterial cellulose produced using media containing waste apple juice. Appl. Biochem. Microbiol. 2018; 54: 649–657. DOI:10.1134/S0003683818060042
39.    Bilgi E, Bayir E, Sendemir-Urkmez A, Hames EE. Optimization of bacterial cellulose production by Gluconacetobacterxylinus using carob and haricot bean. Int. J. Bio. Macromol. 2016; 90: 2-10. DOI:10.4172/2155-9821.1000142
40.    Hegde S, Bhadri G, Narsapur K, Koppal S, Oswal P, Turmuri N, Jumnal V, Hungund B. Statistical optimization of medium components by response surface methodology for enhanced production of bacterial cellulose by Gluconacetobacterpersimmonis, J Bioprocess Biotech. 2013; 4(1): 1-5. DOI:10.4172/2155-9821.1000142
41.    Zeng X, Small DP, Wan W. Statistical of culture conditions for bacterial cellulose production by AcetobacterxylinumBPR 2001 from maple syrup. Carbohydr. Polym. 2011; 85(3): 506-513. Doi: 10.1016/j.carbpol.2011.02.034
42.    Wang SS, Han YH, Chen JL, Zhang DC, Shi XX, Ye YX, Chen DL, Li M. Insights into bacterial cellulose biosynthesis from different carbon sources and the associated biochemical transformation pathways in Komagataeibacter sp. W1. Polymers. 2018; 9(963):1-20. Doi.org/10.3390/polym10090963
43.    Othman AM, Elsayed MA, Elshafei AM, Hassan MM. Application of response surface methodology to optimize the extracellular fungal mediated nano silver green synthesis. Journal of Genetic Engineering and Biotechnology. 2017; 15 (2): 497-504. Doi.org/10.1016/j.jgeb.2017.08.003
44.    Sreenivas RR, Prakasham RS, Krishna PK, Rajesham S, Sharma PN, VenkateswarRL. Xylitol production by Candida sp.: parameter optimization using Taguchi approach. Process Biochem. 2004; 39: 951–956. Doi:10.1016/S0032-9592(03)00207-3
45.    Sivarao S, Anand T, Ammar A. DOE based statistical approaches in modelling of laser processing-review and suggestion. Internation. J. Eng. Technol. 2010; 10: 1–8.
46.    Naseer A, Shahid K, Zulfiqar AR, Tanveer H, Faiza A. Multi-response optimization in the development of oleo-hydrophobic cotton fabric using Taguchi based grey relational analysis. Applied Surface Science. 2016; 367: 370-381. DOI: 10.1016/j.apsusc.2016.01.165
47.    Deng Y, Nagachar N, Fang L, Luan X, CatchmarkJM, Tien M, Kao Th. Isolation and characterization of two cellulose morphology mutants of GluconacetobacterhanseniiATCC 23769 producing cellulose with lower crystallinity, PloS one. 2015; 10(3): 1-18. Doi: 10.1371/journal.pone.0119504
48.    Fang L, Catchmark JM. Characterization of cellulose and other exopolysaccharides produced from Gluconacetobacter strains, Carbohydr. Polym. 2015; 115: 663-669. Doi: 10.1016/j.carbpol.2014.09.028.
49.    Kose R, Sunagawa N, Yoshida M, Tajima K. One-step production of nano fibrillated bacterial cellulose (NFBC) from waste glycerol using GluconacetobacterintermediusNEDO-01. Cellulose. 2013; 20(6): 2971–2979. DOI:10.1007/s10570-013-0050-0
50.    Zhang K. Illustration of the development of bacterial cellulose bundles/ ribbons by Gluconacetobacterxylinus via atomic force microscopy. Applied Microbiology and Biotechnology. 2013; 97(10): 4353–4359. Doi: 10.1007/s00253-013-4752-x.
51.    Lee CM, Gu J, Kafle K, Catchmark J, Kim SH. Cellulose produced by Gluconacetobacterxylinus strains ATCC 53524 and ATCC 23768: Pellicle formation, post-synthesis aggregation and fibre density. Carbohydr. Polym. 2015; 133: 270-276. Doi: 10.1016/j.carbpol.2015.06.091
52.    Gündüz G, Aşık N. Production and Characterization of Bacterial Cellulose with Different Nutrient Source and Surface–Volume Ratios. Drvnaindustrija: Znanstvenicasopiszapitanjadrvnetehnologije. 2018; 69(2): 141-148. Doi.org/10.5552/drind.2018.1744
53.    Lazarini SC. Influence of chemical and physical conditions in selection of GluconacetobacterhanseniiATCC 23769 strains with high capacity to produce bacterial cellulose for application as sustained antimicrobial drug-release supports. J. Appl. Microbiol. 2018; 125(3): 777-791. Doi: 10.1111/jam.13916.
54.    Rozenberga L, Skute M, Belkova L, Sable I, Vikele L, Semjonovs P, Saka M, Ruklisha M, Paegle L. Characterisation of films and nano paper obtained from cellulose synthesised by acetic acid bacteria, Carbohydr. Polym. 2016; 144: 33-40. Doi: 10.1016/j.carbpol.2016.02.025.
55.    Segal L, Creely J, Martin JrA, Conrad C. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J. 1959; 29(10): 786-794. DOI: 10.1177/004051755902901003
56.    kazemi MF, Azin M, Ashori A. Production of bacterial cellulose using different carbon sources and culture media Carbohydr. Polym. 2015; 117: 518-523. Doi: 10.1016/j.carbpol.2014.10.008.  
57.    Yim SM, Song JE, Kim HR. Production and characterization of bacterial cellulose fabrics by nitrogen sources of tea and carbon sources of sugar. Process. Biochem. 2017; 59: 26-36. DOI: 10.1016/j.procbio.2016.07.001
58.    Lin SP, Huang YH, Hsu KD, Lai YJ, Chen YK, Cheng KC. Isolation and identification of cellulose-producing strain Komagataeibacterintermedius from fermented fruit juice, Carbohydr. Polym. 2016; 151: 827-833. Doi: 10.1016/j.carbpol.2016.06.032.
59.    El-WaseifAA, Gaber HS, Ewais EA. Hypocholesterolemic Operating Parameters of Novel Probiotics In vitro. Research Journal of Pharmacy and Technology. 2021; 14(10): 5197-5201.‏
60.    Hammad AA, Farrag AA, Abdelghany TM, El-Waseif AA, AlmawlaSG. Correlation Study of Alcoholic Clove extract against Streptococcus agalactiae virulence factors isolated from Neonatal patients. Research Journal of Pharmacy and Technology. 2022; 15(7): 3159-3164.‏
61.    El-Waseif AA, AwadGS, El Maaty SA, Hassan MG. Molecular characterization of Virulence genes Shiga-like, Heat-labile Toxins and Antibiotics resistance in multidrug-resistant Escherichia coli. Research Journal of Pharmacy and Technology. 2022; 15(7): 2957-2961.‏
62.    El-Waseif AA, El-Ghani GA, Maaty SA, Hassan MG. Cytotoxicity and promising anti-biofilm of Curcuma silver nanoparticles against Candida albicans. Research Journal of Pharmacy and Technology. 2022; 15(8): 3355-3359.‏
63.    El-Waseif AA, Shehata AZ, WaheebHO, El-Ghwas DE. Correlation of probiotic synthesis nanoparticles against rift valley fever vector, Culexantennatusbecker (Diptera: Culicidae). Research Journal of Pharmacy and Technology. 2023; 16(6): 2969-2974.‏
64.    Hassan MG, El-Waseif AA, Abd El gawadRH, Arief OM, El-Maaty SA. Assessment of Antibacterial, Cytotoxicity and Wound Healing Influence of Copper Nanoparticles Synthesized using Probiotic Bacteria. Research Journal of Pharmacy and Technology. 2023; 16(10): 4537-4542.‏
65.    Lela AM, El-Sehrawy MH, Abdel-Rahman MA, El-Waseif AA. Efficiency Evaluation and Characterization of Microbially, Phyto and Chemically Synthesized Silver Nanoparticles. Research Journal of Pharmacy and Technology. 2024; 17(2): 717-722.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available