Author(s): Legis Ocktaviana Saputri, Nurhidayati Nurhidayati, Herpan Syafii Harahap, Fitriannisa Faradina Zubaidi, Arina Windri Rivarti, Lina Permatasari

Email(s): legisocktavia@unram.ac.id

DOI: 10.52711/0974-360X.2024.00916   

Address: Legis Ocktaviana Saputri1*, Nurhidayati Nurhidayati1, Herpan Syafii Harahap2, Fitriannisa Faradina Zubaidi3, Arina Windri Rivarti4, Lina Permatasari5
1Department of Pharmacology, Faculty of Medicine and Health Sciences, The University of Mataram, West Nusa Tenggara, Indonesia.
2Department of Neurology, Faculty of Medicine and Health Sciences, The University of Mataram, West Nusa Tenggara, Indonesia.
3Biomedical Department, Faculty of Medicine and Health Sciences, The University of Mataram, West Nusa Tenggara, Indonesia.
4Department of Physiology, Faculty of Medicine and Health Sciences, The University of Mataram, West Nusa Tenggara, Indonesia.
5Pharmacy Study Program, Faculty of Medicine and Health Sciences, The University of Mataram, West Nusa Tenggara, Indonesia.
*Corresponding Author

Published In:   Volume - 17,      Issue - 12,     Year - 2024


ABSTRACT:
The most common technique in increasing pharmacological activity is by reducing sample particle size. This study aims to investigate the impact of different particle sizes on the bioactive composition and antioxidant activity of sea urchin shells collected from the coastal areas of Lombok Island. Sea urchin shell powders ranging in particle sizes <45 µm, >45 µm, <125 µm, >250 µm, and >2000 µm were extracted using 70% ethanol via the cold maceration method. The composition of bioactive compounds was analyzed using GC-MS, while antioxidant activity was evaluated using the DPPH free radical scavenging assay. Principal Component Analysis (PCA), conducted using Minitab software, was employed to summarize the interrelationships among all variables in the study. The findings reveal that each particle size exhibits a distinct composition of bioactive compounds. The highest concentrations of bioactive compounds and the greatest antioxidant activity were observed in samples with particle sizes >45 µm. PCA identified several bioactive compounds, such as lanolin, palmitic acid, myristic acid, stearic acid, heptadecene-(8)-carboxylic acid, 5,8,11,14-eicosatetraenoic acid, and 9-hexadecanoic acid, contributing significantly to this antioxidant effect. Reducing the particle size was found to alter the composition of bioactive compounds and enhance antioxidant activity. These bioactive compounds show promise for further exploration in the development of new drugs derived from marine sources.


Cite this article:
Legis Ocktaviana Saputri, Nurhidayati Nurhidayati, Herpan Syafii Harahap, Fitriannisa Faradina Zubaidi, Arina Windri Rivarti, Lina Permatasari. Principal component analysis (PCA) of bioactive compounds and antioxidant activity of various sample particle sizes of sea urchin shells from coastal area of Lombok Island. Research Journal Pharmacy and Technology. 2024;17(12):6036-2. doi: 10.52711/0974-360X.2024.00916

Cite(Electronic):
Legis Ocktaviana Saputri, Nurhidayati Nurhidayati, Herpan Syafii Harahap, Fitriannisa Faradina Zubaidi, Arina Windri Rivarti, Lina Permatasari. Principal component analysis (PCA) of bioactive compounds and antioxidant activity of various sample particle sizes of sea urchin shells from coastal area of Lombok Island. Research Journal Pharmacy and Technology. 2024;17(12):6036-2. doi: 10.52711/0974-360X.2024.00916   Available on: https://rjptonline.org/AbstractView.aspx?PID=2024-17-12-53


REFERENCES:
1.    The Ministry of Marine Affairs and Fisheries Republic of Indonesia. Potensi Usaha dan Peluang Investasi Kelautan dan Perikatan Provinsi Nusa Tenggara Barat. Dirjen Penguatan Daya Saing Produk kelautan dan Perikanan, Jakarta. 2018. 9-53.
2.    Yusron E. Biodiversitas Fauna Ekhinodermata (Holothuroidea, Echinoidea, Asteroidea Dan Ophiuroidea) di Perairan Pulau Lombok, Nusa Tenggara Barat. Zoo Indonesia. 2013; 22(1): 1-10. doi.org/10.52508/zi.v22i1.315
3.    Mathew F. Saral. AM. Pharmaceutical and Commercial Importance of Marine Organisms – A Review. Research J. Pharm. and Tech. 2017; 10(12): 4429-4438. doi.org/10.5958/0974-360X.2017.00816.2
4.    Thiruchelvi R. Jayashree P. Hemashree T. Hemasudha TS. Balashanmugam P. Preliminary Phytochemical Analysis of the Crude Extract of Marine Red and Brown Seaweeds. Research J. Pharm. and Tech. 2018; 11(10): 4407-4410. doi.org/10.5958/0974-360X.2018.00806.5
5.    Ramarajan S. Janakiraman V. Allan. Quantitative Phytochemical Analysis of different Solvent extracts of Turbinaria ornata- A Marine Macroalgae. Research J. Pharm. and Tech. 2019; 12(1): 108-112. doi.org/10.5958/0974-360X.2019.00021.0
6.    Muralidharan A. Chandrasekhar R. Rao JV. Marine Microbial Metabolites as Drug Candidates for Alzheimer’s Disease. Research J. Pharm. and Tech. 2019; 12(12): 6081-6086. doi.org/10.5958/0974-360X.2019.01056.4
7.    Kim HDT, Quoc LP, Ngunyen PH, Lan PD, Dinh TT. Research on The Component of Lipid Classes, Fatty Acid from Egg and Body of Sea Urchin Diadema savignyi (Audouin, 1809). J Pharmacogn Phytochem. 2018; 7(1): 836-840.
8.    Khalil EA. Swelim H. El-Tantawi H. Bakr AF. Abdellatif A. Characterization, Cytotoxicity and Antioxidant Activity of Sea Urchins (Diadema savignyi) and Jellyfish (Aurelia aurita) Extracts. Egyptian Journal of Aquatic Research. 2022; 48(4): 343-348. doi.org/10.1016/j.ejar.2022.05.005
9.    Moreno-García DM, Salas-Rojas M, Fernández-Mrtínez E, et al. Sea Urchins: an Update on Their Pharmacological Properties. PeerJ. 2022; 10: 1-19. doi:10.7717/peerj.13606.
10.    Jangdey MS. Gupta A. Sah Ak. Daharwal SJ. Role of Antioxidants in Developing Novel Delivery Systems as Longevity Therapy. Research J. Science and Tech. 2014; 6(3): 119-127. Available on: https://rjstonline.com/AbstractView.aspx?PID=2014-6-3-1
11.    Olufunmilayo EO. Gerke-Duncan MB. Holsinger RMD. Oxidative Stress and Antioxidants in Neurodegenerative Disorders. Antioxidants. 2023; 12(517). https://doi.org/10.3390/antiox12020517
12.    Zhang YJ, Gan RY, Li S, et al. Antioxidant Phytochemicals for the Prevention and Treatment of Chronic Diseases. Molecules. 2015; 20: 21138-21156. doi:10.3390/molecules201219753. doi.org/10.3390/molecules201219753
13.    Nailwal N. Bhatia N. Ali A. Ansari A. Raheja R. Godad A. Doshi G. Chapter 4 - Antioxidants Obtained from Marine Sources. In Marine Antioxidants: Preparations, Syntheses, and Applications. Academic Press. 2023; 45-56. doi.org/10.1016/B978-0-323-95086-2.00011-4
14.    Rivarti AW. Saputri LO. Harahap HS. Permatasari, L. Alzheimer’s Disease from a Diabetic Brain: Exploring The Molecular Process to Determine The Potential Therapy Target from Marine Sources. Pharmacy Education. 2023; 23(4): 189-195. doi.org/10.46542/pe.2023.234.189195
15.    Savjani KT, Gajjar AK, Savjani JK. Drug Solubility: Importance and Enhancement Techniques. ISRN Pharm. 2012; 2012: 1-10. doi.org/10.5402/2012/195727
16.    Jain S. Patel N. Lin S. Solubility and Dissolution Enhancement Strategies: Current Understanding and Recent Trends. Drug Dev Ind Pharm. 2015; 41(6): 875-87. doi.org/10.3109/03639045.2014.971027.
17.    Ainurofiq A, Putro DS, Ramadhani DA, Putra GM, Santo LDCDE. A Review on Solubility Enhancement Methods for Poorly Water-Soluble Drugs. J Reports Pharm Sci. 2021; 10(1): 137-147. doi.org/10.4103/jrptps.JRPTPS_134_19
18.    Moka W, Inaku DF, Rais M, Moka W. Sea Urchin Identification in Kodingareng Lompo Waters, Spermonde Archipelago. In: IOP Conference Series: Earth and Environmental Science. Vol 777. IOP Publishing Ltd; 2021: 1-6. doi.org/10.1088/1755-1315/777/1/012015
19.    Prasedya ES. Frediansyah A. Martyasari NWR. et al. Effect of Particle Size on Phytochemical Composition and Antioxidant Properties of Sargassum Cristaefolium Ethanol Extract. Scientific Reports. 2021; 11: 17876. doi.org/10.1038/s41598-021-95769-y
20.    Jose BE. PanneerSelvam P. Identification of Phytochemical Constituents in the Leaf Extracts of Azima tetracantha Lam Using Gas Chromatography-Mass Spectrometry (GC-MS) Analysis and Antioxidant Activity. Asian J. Research Chem. 2018; 11(6): 857-862. doi.org/10.5958/0974-4150.2018.00150.5. Available on: https://ajrconline.org/AbstractView.aspx?PID=2018-11-6-5
21.    Jana K. Ghosh A. Debnath B. Das S. GC-MS Analysis of Phytocomponents of Methanolic Bark Extract of Sterculia foetida. Research Journal of Pharmacy and Technology. 2023; 16(12): 5624-5630. doi.org/10.52711/0974-360X.2023.00909
22.    Akshay R. Yadav, Shrinivas K. Mohite. Antioxidant Activity of Malvastrum coromandelianum Leaf extracts. Research J. Topical and Cosmetic Sci. 2020; 11(2): 59-61.
23.    Permatasari L. Riyanto S. Rohman A. Beta-Sitosterol: The Isolated Compound from n-Hexane Fraction of Baccaurea racemose (Reinw. Ex Blume) Mull. Arg. Pulp and its Antioxidant Activity. Indonesian Journal of Chemometrics and Pharmaceutical Analysis. 2021; 1(3): 156-163. doi.org/10.22146/ijcpa.3693
24.    Ozawa H. Hirayama A. Shoji F. et al. Comprehensive Dipeptide Analysis Revealed Cancer-Specific Profile in the Liver of Patients with Hepatocellular Carcinoma and Hepatitis. Metabolites. 2020; 10(442): 1-11. doi.org/10.3390/metabo10110442
25.    Zhang K. Li T. Shan X. Lu R. Zhang S. Xu H. Cholesterol: Bioactivities, Structural Modification, Mechanisms of Action, and Structure-Activity Relationships. Mini Rev Med Chem. 2021; 21(14): 1830-1848. doi.org/10.2174/1389557521666210105123320.
26.    Xu C. Wu P. Gao J. Zhang L. Ma T. Ma B. Yang S. et al. Heptadecanoic Acid Inhibits Cell Proliferation In PC‑9 Non‑Small‑Cell Lung Cancer Cells with Acquired Gefitinib Resistanca. Oncol Rep. 2019; 41(6): 3499-3507. doi.org/10.3892/or.2019.7130.10.3892/or.2019.7130
27.    Tulandi SM. Tanzil L. Ulfa DM. Analysis of Bioactive Compounds from Methanol Extract of Diadema setosum Sea Urchin Gonads using Gas Chromatography-Mass Spectrometry. Research J. Pharm. and Tech. 2021; 14(3): 1629-1634. doi.org/10.5958/0974-360X.2021.00289.4
28.    Luo Y. Huang Y. Yuan X. Zhang L. Zhang X. Gao P. Evaluation of Fatty Acid Composition and Antioxidant Activity of Wild-Growing Mushrooms from Southwest China. Int J Med Mushrooms. 2017; 19(10): 937-947. doi.org/10.1615/IntJMedMushrooms.2017024388.
29.    Al-Douri N. Shakya AK. Fatty Acids Analysis and Antioxidant Activity of a Lipid Extract Obtained From Mercurialis Annua L. Grown Wildly in Jordan. Acta Poloniae Pharmaceutica n Drug Research. 2019;76(2): 275-281. doi.org/10.32383/appdr/97344
30.    Siswadi S, Saragih GS. Phytochemical Analysis of Bioactive Compounds in Ethanolic Extract of Sterculia quadrifida R.Br. In: AIP Conference Proceedings. Vol 2353. American Institute of Physics Inc.; 2021. doi.org/10.1063/5.0053057
31.    Aparna V. Dileep KV. Mandal PK. Karthe P. Sadasivan C. Haridas M. Anti-Inflammatory Property of n-Hexadecanoic Acid: Structural Evidence and Kinetic Assessment. Chem Biol Drug. 2012; 80(3): 434–439. doi.org/10.1111/j.1747-0285.2012.01418.x
32.    Hashem EZ. Khodadadi M. Asadi F. Koohi MK. Eslami M. Hasani-Dizaj S. Zadeh RT. The Antioxidant Activity of Palmitoleic Acid on the Oxidative Stress Parameters of Palmitic Acid in Adult Rat Cardiomyocytes. Ann Mil Health Sci Res. 2016; 14(3): 1-6. doi.org/10.5812/AMH.11467
33.    Liu C. Yuan C. Ramaswamy HS. Ren Y. Ren X. Antioxidant Capacity and Hepatoprotective Activity of Myristic Acid Acylated Derivative of Phloridzin. Heliyon. 2019; 5(5): 1-7. doi.org/10.1016/j.heliyon.2019.e01761
34.    Reza ASMA. Haque A. Sarker J. Rahman M. Tareq AM. Khan Z. Sadik G. Tsukahara T. Alam AHMK. Antiproliferative and Antioxidant Potentials of Bioactive Edible Vegetable Fraction of Achyranthes Ferruginea Roxb. In Cancer Cell Line. Food Sci Nutr. 2021; 9(7): 3777-3805. doi.org/10.1002/fsn3.2343
35.    Rahayu AAD. Prihantini AI. Krisnawati. Nugraheni YMMA. Chemical Components of Different Parts of Strychnos igustrina, a Medicinal Plant from Indonesia. IOP Conf. Ser.: Earth Environ. Sci. 2022; 959(1): 1-11. doi.org/10.1088/1755-1315/959/1/012061
36.    Sukandar D. Nurbayti S. Rudiana T. Husna TW. Isolation and Structure Determination of Antioxidants Active Compounds from Ethyl Acetate Extract of Heartwood Namnam (Cynometra Cauliflora L.). Indonesian Journal of Applied Chemistry. 2017; 19(1): 11-17. doi.org/10.14203/jkti.v19i1.325
37.    Sayuti NA. Kirwanto A. Antioxidant Activity Test of Macerated Extract and Sonicated Extract of Areca Nut (Areca catechu L.). Research Journal of Pharmacy and Technology. 2023; 16(12): 5586-2. doi.org/10.52711/0974-360X.2023.00903
38.    Espinoza-Acosta,a, JL. Torres-Chávez PI. Ramírez-Wong B. López-Saiz CM. Montaño-Leyva B. Antioxidant, Antimicrobial, and Antimutagenic Properties of Technical Lignins and Their Applications. Article in BioResources. 2016; 11(2): 1-30. doi.org/10.15376/biores.11.2.Espinoza_Acosta
39.    Kus ́ PM. Jerkovic ́ I. New Sample Preparation Method for Honey Volatiles Fingerprinting Based on Dehydration Homogeneous Liquid–Liquid Extraction (DHLLE). Molecules. 2018; 23(1769): 1-11. doi.org/10.3390/molecules23071769
40.    Nengroo ZR. Rauf A. Fatty Acid Composition and Antioxidant Activities of Five Medicinal Plants T from Kashmir. Industrial Crops and Products. 2019; 140 (1): 1-6. doi.org/10.1016/j.indcrop.2019.111596
41.    Okukawa M. Yoshizaki Y. Yano S. Nonomura Y. The Selective Antibacterial Activity of the Mixed Systems Containing Myristic Acid against Staphylococci. J Oleo Sci. 2021; 70(9): 1239-1246. doi.org/10.5650/jos.ess21090

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available