Author(s):
Anita Puspa Widiyana, Tri Widiandani, Siswandono Siswodihardjo
Email(s):
tri-w@ff.unair.ac.id
DOI:
10.52711/0974-360X.2024.00910
Address:
Anita Puspa Widiyana1,2, Tri Widiandani3*, Siswandono Siswodihardjo3,4
1Doctoral Program of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60155, Indonesia.
2Department of Pharmacy, Faculty of Medicine, Universitas Islam Malang, Malang 65144, Indonesia.
3Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60155, Indonesia.
4Department of Pharmacy, Faculty of Pharmacy, Institut Ilmu Kesehatan Bhakti Wiyata, Kediri 64100, Indonesia.
*Corresponding Author
Published In:
Volume - 17,
Issue - 12,
Year - 2024
ABSTRACT:
Estrogen receptor alpha (ER-a) is an attractive and important target in breast cancer tissue development and a trigger for carcinogenesis. More than 70–75% of most breast cancers are ER-a. However, due to problems with ER-a inhibitors as major challenges related to intrinsic resistance, recurrent metastasis, additive effects, and estradiol antagonists, it’s necessary to identify new effective and selective inhibitor compounds. The aim of this study was to predict the anticancer activity, pharmacokinetics, and toxicity of twenty 5-O-acetylpinostrobin derivatives. The method used for activity prediction was the molecular docking approach with the Molegro Virtual Docker. While pharmacokinetics and toxicity (ADMET) studies with pkCSM online. The results of the molecular docking study showed a rerank score value of twenty 5-O-acetylpinostrobin derivatives of -113.8310 to -71.7388 kcal/mol. Eight compounds (AP-10-12, 14-16, and 19-20) had a smaller rerank score than pinostrobin and native ligand. The similarity of amino acid residue interactions such as a donor hydrogen bond between the oxygen atom of the chroman-4-on ring and Arg 394 as well as a steric interaction between Glu 353 and the C-aromatic of the chroman-4-on ring. The results of pharmacokinetics and toxicity studies showed that all compounds derived from 5-O-acetylpinostrobin have good absorption, distribution, metabolism, and excretion, as well as low toxicity. The conclusion of this study was that compound codes AP-10, 11, 14, 15, 19, and 20 have greater predicted breast anticancer activity, better pharmacokinetics, and lower toxicity than pinostrobin and 4-hydroxytamoxifen. Therefore, these six compounds have the potential to be developed further.
Cite this article:
Anita Puspa Widiyana, Tri Widiandani, Siswandono Siswodihardjo. 5-O-Acetylpinostrobin derivatives as Estrogen-α inhibitors: Molecular docking and Pharmacokinetic analysis. Research Journal Pharmacy and Technology. 2024;17(12):5996-2. doi: 10.52711/0974-360X.2024.00910
Cite(Electronic):
Anita Puspa Widiyana, Tri Widiandani, Siswandono Siswodihardjo. 5-O-Acetylpinostrobin derivatives as Estrogen-α inhibitors: Molecular docking and Pharmacokinetic analysis. Research Journal Pharmacy and Technology. 2024;17(12):5996-2. doi: 10.52711/0974-360X.2024.00910 Available on: https://rjptonline.org/AbstractView.aspx?PID=2024-17-12-47
REFERENCES:
1. Waill AE, Mohamed AM, Walid F, Mahmoud E, Ibrahim M.N, Ghoson MD. Molecular identification, metabolites profiling, anti-breast cancer, anti-colorectal cancer, and antioxidant potentials of Streptomyces zaomyceticus AA1 isolated from a remote bat cave in Egypt. Research J. Pharm. and Tech. 2020; 13(7): 3072-3080. doi: 10.5958/0974-360X.2020.00545.4
2. Bharti A, Dheeraj A. In vivo and in vitro investigation of cytotoxic and antitumor activities of polyphenolic leaf extract of Hibiscus sabdariffa against, breast cancer cell lines. Research J. Pharm. and Tech. 2019; 13(2): 615-620. doi: 10.5958/0974-360X.2020.00116.X
3. Krishnaveni K, Rosmi J, Sumitha SK, Teena J, Shanmuga SR, Sambathkumar R. A study on socio demographic and associated risk factors for cancer patients in private cancer hospital, Bangalore, India. Research J. Pharm. and Tech. 2018; 11(2): 677-680. doi: 10.5958/0974-360X.2018.00127.0
4. Nahla EE, Enas AE, Naglaa FK, Hend MS, Eman GH. New shining stars in the sky of breast cancer diagnosis and prognosis: A Review. Research J. Pharm. and Tech. 2022; 15(8): 3808-3. doi: 10.52711/0974-360X.2022.00639
5. Viani A, Andi AM. Combination effects of Abelmoschus manihot (L.) Medik of n-hexane extracts and doxorubicin in breast cancer 4T1 cells line. Research J. Pharm. and Tech. 2022; 15(2): 639-2. doi: 10.52711/0974-360X.2022.00105
6. Jainab NH, Mohan Maruga Raja MK. In silico molecular docking studies on the chemical constituents of clerodendrum phlomidis for its cytotoxic potential against breast cancer markers. Research J. Pharm. and Tech. 2018; 11(4): 1612-1618. doi: 10.5958/0974-360X.2018.00300.1
7. Suresh R, D, Benitojohnson, C, Maheswari C, Venkatnarayanan R, Manavalan, R. Chemo preventive activity of Triumfetta rhomboidea in 7, 12-dimethylbenz (A) anthracene Induced breast cancer in Sprague –Dawley rat model. Research J. Pharm. and Tech. 2017; 10(3): 687-692. doi: 10.5958/0974-360X.2017.00128.7
8. Sara JK, AbdulSahib KA, Abdul-Ameer NA. Compartment between breast cancer patient undergoing chemotherapy and healthy women by cytokinesis-block micronucleus testand nuclear division index. Research J. Pharm. and Tech. 2018; 11(2): 705-710. doi: 10.5958/0974-360X.2018.00133.6
9. Feng Y, Spezia M, Huang S, Yuan C, Zeng Z, Zhang L, Ji X, Liu W, Huang B, Luo W, Liu B, Lei Y, Du S, Vuppalapati A, Luu HH, Haydon RC, He TC, Ren G. Breast cancer development and progression: Risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis. Genes and Diseases. 2018; 5(2): 77–106. doi:10.1016/j.gendis.2018.05.001
10. Mohend AN, Hadi MA, Alaa SA. Comparative study between paired primary and relapsed breast cancer patients based on clinicopathological features and molecular subtypes of breast cancer in babylon province. Research J. Pharm. and Tech. 2018; 11(6): 2365-2371. doi: 10.5958/0974-360X.2018.00439.0
11. Jayashree V, Malarkodi V. Breast cancer and various prognostic biomarkers for the diagnosis of the disease: A Review. Research J. Pharm. and Tech. 2017; 10(9): 3211-3216. doi: 10.5958/0974-360X.2017.00570.4
12. Hanaa HA, Hadeer AA, Ghada HE, Hebatallah GH, Emad FE. Quercetin offers chemopreventive potential against breast cancer by targeting a network of signalling pathways. Research J. Pharm. and Tech. 2021; 14(5): 2829-2839. doi: 10.52711/0974-360X.2021.00499
13. Shanthi D, R. Saravanan. Evaluation of cytotoxicity of normal Vero and anticancer activity of human breast cancer cell lines by aqueous unripe fruit extract of Solanum torvum. Research J. Pharm. and Tech. 2021; 14(7): 3504-8. doi: 10.52711/0974-360X.2021.00607
14. Aguslina K, Siswandono S, I Ketut S. Synthesis and cytotoxic activity of N-(4-bromo)-benzoyl-N’phenylthiourea and 4-(tert-butyl)-N-benzoylurea on primary cells of HER2-positive breast cancer. Research J. Pharm. and Tech. 2021; 14(3):1195-1200. doi: 10.5958/0974-360X.2021.00213.4
15. Wiyono L, Edina BC, Rahmawanti RA, Azizah NN, Paramita RI, Purwaningsih EH, Fadilah F. Isolation, synthesis nanoparticle, and in-vitro test of pinostrobin from Kaempferia pandurata on MCF-7 and MDAMB-231 breast cancer cell. Research J. Pharm. and Tech. 2020; 13(6): 2797-2801. doi: 10.5958/0974-360X.2020.00497.7
16. Praditapuspa EN, Siswandono, Widiandani T. In silico analysis of pinostrobin derivatives from boesenbergia pandurata on ErbB4 kinase target and QSPR linear models to predict drug clearance for searching anti-breast cancer drug candidates. Pharmacognosy Journal. 2021; 13(5): 1143–1149. https://doi.org/10.5530/pj.2021.13.147
17. Poerwono H, Sasaki S, Hattori Y, Higashiyama K. Efficient microwave-assisted prenylation of pinostrobin and biological evaluation of its derivatives as antitumor agents. Bioorganic and Medicinal Chemistry Letters. 2010; 20: 2086–2089. doi:10.1016/j.bmcl.2010.02.068.
18. Agustin SL, Widiandani T, Hardjono S, Purwanto BT. QSAR of acyl pinostrobin derivatives as Anti-breast cancer against HER-2 receptor and their ADMET properties based on in silico Study. Research Journal of Pharmacy and Technology. 2022; 15(10):4641-8. doi: 10.52711/0974-360X.2022.00779
19. Bafna D, Ban F, Rennie PS, Singh K, Cherkasov A. Computer-aided ligand discovery for estrogen receptor alpha. Int J Mol Sci. 2020; 21(12): 1–49. doi: 10.3390/ijms21124193
20. Dara S, Dhamercherla S, Jadav SS, Babu CM, Ahsan MJ. Machine learning in drug discovery: A Review. Artificial Intelligence Review. 2022; 55(3): 1947–1999. doi 10.1007/s10462-021-10058-4
21. Chinchole PP, Wankhede SB. Comparative in silico drug likeness and in vitro study of some schiff’s bases as potent COX-II inhibitors. Research J. Pharm. and Tech. 2019; 12(10): 4973-4980. doi: 10.5958/0974-360X.2019.00862.X
22. Ferreira LG, Dos Santos RN, Oliva G, Andricopulo AD. Molecular docking and structure-based drug design strategies. Molecules. 2015; 20(7); 13384–13421. doi:10.3390/molecules200713384
23. Marimuthu SCV, Murugesan J, Babkiewicz E, Maszczyk P, Sankaranarayanan M, Thangamariappan E. Pharmacoinformatics-based approach for uncovering the quorum-quenching activity of phytocompounds against the oral pathogen, streptococcus mutans. Molecules. 2023; 28(14): 1–20. doi: 10.3390/molecules28145514.
24. Karavadi B, Shivashankari S. Computational study on receptors related to aggressive conduct. Research J. Pharm. and Tech. 2018; 11(5): 1729-1733. doi: 10.5958/0974-360X.2018.00321.9
25. Beck TC, Springs K, Morningstar JE, Mills C, Stoddard A, Guo L, et al. Application of pharmacokinetic prediction platforms in the design of optimized anti-cancer drugs. Molecules. 2022; 27(12): 1–10. doi: 10.3390/molecules27123678
26. Widiyana AP, Putra GS, Muchlashi LA, Sulistyowaty MI, Budiati T. Design and molecular docking studies of quinazoline derivatives as antiproliferation. JFKI. 2016; 3(1): 32–8. doi: 10.20473/jfiki.v3i22016.44-48
27. Aiyalu R, Lakshmanan K, Balasubramanian HB, Ramasamy A. Screening of iridoids and seco-iridoids in gentianaceae family against liver corrective targets using molecular docking studies. Research J. Pharm. and Tech. 2019; 12(12): 5735-5738. doi: 10.5958/0974-360X.2019.00992.2
28. Baul HS, Rajiniraja M. Favorable binding of quercetin to α-synuclein as potential target in parkinson disease: An insilico approach. Research J. Pharm. and Tech. 2018; 11(1): 203-206 doi: 10.5958/0974-360X.2018.00038.0
29. Puspaningtyas AR. Docking molekul dengan metoda molegro virtual docker dari ekstrak ir psidium guajava, linn dan citrus sinensis, peels sebagai inhibitor pada tirosinase untuk pemutih kulit. JKTI. 2013; 15(1); 31-39.
30. El Aissouq A, Toufik H, Stitou M, Ouammou A, Lamchouri F. In silico design of novel tetra-substituted pyridinylimidazoles derivatives as c-Jun N-terminal kinase-3 inhibitors, using 2D/3D-QSAR studies, molecular docking and ADMET prediction. Int J Pept Res Ther. 2020; 26(3): 1335–51. doi: 10.1007/s10989-019-09939-8
31. Singh SP, Deb CR, Ahmed SU, Saratchandra Y, Konwar BK. Molecular docking simulation analysis of the interaction of dietary flavonols with heat shock protein 90. J Biomed Res. 2016; 30(1): 67–74. doi: 10.7555/JBR.30.20130158
32. Abdullahi SH, Uzairu A, Shallangwa GA, Uba S, Umar AB. Pharmacokinetic profiling of quinazoline-4(3H)-one analogs as EGFR inhibitors: 3D-QSAR modeling, molecular docking studies and the design of therapeutic agents. J Taibah Univ Med Sci. 2023; 18(5): 1018–29. doi: 10.1016/j.jtumed.2023.02.015
33. Siswandono and Soekardjo B. Kimia Medisinal Ed 2. Ailangga University Press, Surabaya. 2008.
34. Reddy NN, Hung S, Swamy MK, Sanjeev A, Reddy PM. Synthesis and rational design of new appended 1,2,3-triazole-uracil ensembles as promising anti-tumor agents via in silico VEGFR-2 Transferase inhibition. Molecules. 2021; 26(7): 1952. doi: 10.3390/molecules26071952
35. Hosfield DJ, Weber S, Li S, Sauvage M, Joiner CF., Hancock GR, Sullivan EA, Ndukwe E, Han R, Cush S, Lainé M, Mader SC. Greene GL., Fanning SW. Stereospecific lasofoxifene derivatives reveal the interplay between estrogen receptor alpha stability and antagonistic activity in ESR1 mutant breast cancer cells. eLife. 2022; 16(11): e72512. doi: 10.7554/eLife.72512
36. Maximov PY, Abderrahman B, Fanning SW, Sengupta S, Fan P, Curpan RF., Maria D, Rincon, Q, Rajan SS, Greene GL, Jordan, VC. Endoxifen, 4-hydroxytamoxifen and an estrogenic derivative modulate estrogen receptor complex mediated apoptosis in breast cancers. Mol Pharmacol. 2018; 94(2): 812–822. doi: 10.1124/mol.117.111385
37. Ibrahim ZY, Uzairu A, Shallangwa GA, Abechi SE, Isyaku S. Virtual screening and molecular dynamic simulations of the antimalarial derivatives of 2-anilino 4-amino substituted quinazolines docked against a Pf-DHODH protein target. Egypt J Med Hum Genet. 2022; 23(1): 119. doi: 10.1186/s43042-022-00329-2
38. Fadhil Pratama MR, Poerwono H, Siswodihardjo S. Introducing a two‐dimensional graph of docking score difference vs. similarity of ligand‐receptor interactions. Indones J Biotechnol. 2021; 26(1): 54–60. doi: 10.22146/ijbiotech.62194
39. Khdar ZA, Sliman F, Kousara M. Design and in-silico ADMET analysis of new benzopyrane-derived PIM-1 inhibitors. Research J. Pharm. and Tech. 2019; 12(11): 5413-5423. doi: 10.5958/0974-360X.2019.00939.9
40. Illian DN, Widiyana AP, Hasana AR, Maysarah H, Al Mustaniroh SS, Basyuni M. In silico approach: Prediction of ADMET, molecular docking, and QSPR of secondary metabolites in Mangroves. J Appl Pharm Sci. 2022; 12(11): 021–029. doi: 10.7324/JAPS.2022.121103
41. Malik A, Malik N, Dhiman P, Khatkar A, Kakkar S. Molecular docking, synthesis, α-amylase inhibition, urease inhibition and antioxidant evaluation of 4-hydroxy-3-methoxy benzoic acid Research J. Pharm. and Tech. 2019; 12(12): 5653-5663. derivatives. doi: 10.5958/0974-360X.2019.00978.8
42. Mandal M, Sahoo SK, Patra P, Mallik S, Zhao Z. In silico ranking of phenolics for therapeutic effectiveness on cancer stem cells. BMC Bioinformatics. 2020; 21(21): 1–18. doi: 10.1186/s12859-020-03849-z
43. Bitew M, Desalegn T, Demissie TB, Belayneh A, Endale M, Eswaramoorthy R. Pharmacokinetics and drug-likeness of antidiabetic flavonoids: Molecular docking and DFT study. PLoS One . 2021; 16(12): e0260853. doi:10.1371/journal.pone.0260853
44. Taupiqurrohman O, Rezaldi F, Amalia D, Suryani Y. Anticancer potency of dimethyl 2-(2-hydroxy-2-methoxypropilidine) malonate in Kombucha. J Biodjati. 2022; 7(1): 86–94. doi: 10.15575/biodjati.v7i1.14634
45. Hardjono S, Widiandani T, Purwanto BT, Nasyanka AL. Molecular docking of N-benzoyl-N'-(4-fluorophenyl) thiourea derivatives as anticancer drug candidate and their ADMET prediction. Research J. Pharm. and Tech. 2019; 12(5): 2160-2166. doi: 10.5958/0974-360X.2019.00359.7
46. Cronin-Fenton DP, Lash TL. Clinical epidemiology and pharmacology of CYP2D6 inhibition related to breast cancer outcomes. Expert Rev Clin Pharmacol. 2011; 4(3): 363–77. doi:10.1586/ecp.11.18.
47. Lombardo F, Obach RS, Varma M V., Stringer R, Berellini G. Clearance mechanism assignment and total clearance prediction in human based upon in silico models. J Med Chem. 2014; 57(10): 4397–405. doi.org/10.1021/jm500436v
48. Gadaleta D, Vuković K, Toma C, Lavado GJ, Karmaus AL, Mansouri K. SAR and QSAR modeling of a large collection of LD50 rat acute oral toxicity data. J Cheminform. 2019; 11(1): 1–16. doi: 10.1186/s13321-019-0383-2