Author(s): R Pathak, A Pathak

Email(s): ashima.pathak@ggdsd.ac.in

DOI: 10.52711/0974-360X.2024.00903   

Address: R Pathak1, A Pathak2
1Professor, Department of Physiology, Faculty of Medicine, Manipal University College, Malaysia, Melaka.
2Department of Biotechnology, Goswami Ganesh Dutta Sanatan Dharma College, Chandigarh, India.
*Corresponding Author

Published In:   Volume - 17,      Issue - 12,     Year - 2024


ABSTRACT:
Lithium is a drug of choice in treatment of mania, unipolar and bipolar disorders. During treatment, the trace element levels are severely affected. The objective of this investigation was to determine whether zinc supplementation, which acts as an antioxidant, could improve the levels of trace elements in rats administered lithium. In pursuit of this aim, the male Wistar rats weighing between 150 and 195 g were classified into four primary categories: Group I rats were supplied with unrestricted access to potable water and standard pelleted feed. Lithium carbonate was introduced into the diets of Group II rats 1.1 gram per kilogram of body weight. The drinking water of Group III rats contained a zinc sulphate concentration of 227 mg/L. Lastly, Group IV rats received both lithium as well as zinc in a manner consistent with that of Group II and III, respectively. All the treatments were given for 8 weeks. Serum zinc (Zn), sodium (Na) and potassium (K) levels were decreased with lithium treatment, but levels were increased upon co-administration of lithium (Li) and zinc treatment. The calcium (Ca) levels were reduced in combined group as compared to the lithium treated group. Thus, the introduction of zinc into lithium-treated mice resulted in the restoration of metal levels to baseline, suggesting that zinc may have the ability to restore altered metal levels.


Cite this article:
R Pathak, A Pathak. Effects of Zinc supplementation on Sodium (Na), Potassium (K) and Calcium (Ca) levels in the serum of Lithium administered rats. Research Journal Pharmacy and Technology. 2024;17(12):5955-9. doi: 10.52711/0974-360X.2024.00903

Cite(Electronic):
R Pathak, A Pathak. Effects of Zinc supplementation on Sodium (Na), Potassium (K) and Calcium (Ca) levels in the serum of Lithium administered rats. Research Journal Pharmacy and Technology. 2024;17(12):5955-9. doi: 10.52711/0974-360X.2024.00903   Available on: https://rjptonline.org/AbstractView.aspx?PID=2024-17-12-40


REFERENCES:
1.    Post RM. The New News about Lithium: an Underutilized Treatment in the United States. Neuropsychopharmacology. 2018; 43(5): 1174–1179. doi: 10.1038/npp.2017.238
2.    Khankari RV, Pagar KR, Khandbahale SV, Sable PS. A Review on: Antithyroid Drug Therapy. Asian J Res Pharm Sci. 2019; 9(3): 238-241.
3.    Chapekar NS, Bavaskar SR, Sayyad FJ. Bipolar Disorder and Role of Lithium in Its Management: An Overview. Research J. Pharmacology and Pharmacodynamics. 2010; 2(2): 111-116.
4.    Bhor RJ, Damdhar H, Kokate G, Salve M, Andhale S. A Review on Sign and Symptoms of Graves’s Diseases as Thyroidal Diseases and Its Treatment with Anti Thyroidal Drug. Research J. Pharm. and Tech. 2016; 9(11): 2027-2033.
5.    S. Subasree. Prevalence of Thyroid Disroders in India: An Overview. Research J Pharm and Tech 2014 ; 7(10): 1165-1168.
6.    Young W. Review of lithium effects on brain and blood. Cell Transplantation. 2009; 18(9): 951–975. doi: 10.3727/096368909X471251
7.    Kibirige D, Luzinda K, Ssekitoleko R. Spectrum of lithium induced thyroid abnormalities: a current perspective. Thyroid Res. 2013; 6: 3. doi: 10.1186/1756-6614-6-3
8.    Kumar S. Role of Lithium in Living Systems-An Outlook. Research Journal of Engineering and Technology. 2022; 13(3): 77-9.
9.    Szklarska D, Rzymski P. Is lithium a micronutrient? From biological activity and epidemiological observation to food fortification. Biol Trace Elem Res. 2019; 189: 18–27. doi: 10.1007/s12011-018-1455-2.
10.    Okoshi1 M, Yamada Y, Komaba S, Yamada A, Nakai H. Theoretical analysis of interactions between potassium ions and organic electrolyte solvents: A comparison with lithium, sodium, and magnesium ions. J Electrochem Soc. 2017; 164 A54. doi: 10.1149/2.0211702jes
11.    Harari F, Åkesson A, Casimiro E, Lu Y, Vahter M. Exposure to lithium through drinking water and calcium homeostasis during pregnancy: A longitudinal study. Environ Res. 2016; 147: 1-7. doi: 0.1016/j.envres.2016.01.031
12.    Shine B, McKnight RF, Leaver L, Geddes JR. Long-term effects of lithium on renal, thyroid, and parathyroid function: a retrospective analysis of laboratory data. Lancet. 2015; 386(9992): 461-8. doi: 10.1016/S0140-6736(14)61842-0
13.    Singh B, Dhawan D, Nehru B, Garg ML, Mangal PC, Chand B, Trehan PN. Impact of lead pollution on the status of other trace metals in blood and alterations in hepatic functions. Biol Trace Elem Res. 1994; 40: 21. doi: 10.1007/BF02916817
14.    Mohandas R, Ramani P, Sherlin HJ, Gheena S, Ramasubramanian A, Jayaraj G, Don KR, Santhanam A. Lithium Carbonate as A Bluing Agent – A Comparative Study. Research J Pharm and Tech. 2019; 12(10): 4895-4898.
15.    Nasir AS, Jaffat HS. Symbiotic effect of sodium selenite and vitamin E against lithium carbonate induced brain toxicity in male rats. Research J Pharm and Tech. 2017; 10(6): 1661-1665.
16.    Chasapis CT, Ntoupa P-SA, Spiliopoulou CA, Setfanidou ME. Recent aspects of the effects of zinc on human health. Arch Toxicol. 2020; 94: 1443–1460. doi: 10.1007/s00204-020-02702-9
17.    Forrest MD. The sodium-potassium pump is an information processing element in brain computation. Front Physiol. 2014; 5: 472. doi: 10.3389/fphys.2014.00472
18.    Pathak R, Dhawan D, Pathak A. Effect of zinc supplementation on the status of thyroid hormones and Na, K, and Ca levels in blood following ethanol feeding. Biol Trace Elem Res. 2011; 140: 208–214. doi: 0.1007/s12011-010-8691-4
19.    Pathak R, Pathak A. Effectiveness of zinc supplementation on lithium-induced alterations in thyroid functions. Biol Trace Elem Res. 2021; 199: 2266–2271. doi: 10.1007/s12011-020-02356-9
20.    Ikkurthi S, Balachander S, Goyal B, Mir AA, Chakrabarti S and Pal A. A comparative evaluation of lithium estimation for samples collected in different tubes and its stability on storage. J Lab Physicians. 2018; 10(1): 56–59. doi: 10.4103/JLP.JLP_78_17
21.    Brown PB, Legg EF. The estimation of lithium in serum. Anal Coin Biochem. 1970; 7: 13.
22.    Treska E, Vaso K, Buzo S, Emiri A. Zinc deficiency analysis in serum blood, using two different methods. J Environ Prot Ecol. 2014; 15(1): 309 316.
23.    23 Al-Fartusie FS, Mohssan SN. Essential trace elements and their vital roles in human body. IJACS. 2017; 5(3): 127-136. doi: 10.22607/IJACS.2017.503003
24.    Anandkumar S, Chacko J, Theertha CK, Usha M. Thyroid Disorder: An Overview. Res J Pharmacology and Pharmacodynamics. 2020; 12(1): 01-04.
25.    Mankar SD, Bhawar SB, Shelke M, Sonawane P, Parjane S. Thyroid Disorder: An Overview. Research Journal of Pharmacology and Pharmacodynamics. 2022; 14(1): 43-6.
26.    Mehri A. Trace elements in human nutrition (II) – An update. Int J Prev Med. 2020; 11: 2. doi: 10.4103/ijpvm.IJPVM_48_19
27.    Severus E, Bauer M, Geddes J. Efficacy and effectiveness of lithium in the long-term treatment of bipolar disorders: An update. Pharmacopsychiatry. 2018; 51(5): 173-176. doi: 10.1055/a-0627-7489
28.    Singh B, Dhawan D, Mangal PC, Chand B, Singh N, Trehan PN. Combined action of lead and lithium on essential and nonessential elements in rat blood. Biol Trace Elem Res. 1994; 46: 15
29.    Reddy DS, Reddy MS. Serum lithium levels: Ideal time for sample collection! Are we doing it right? Ind J Psychol Med. 2014; 36(3): 346–347. doi: 10.4103/0253-7176.135399
30.    Bhalla P, Chadha VD, Dhawan DK. Effectiveness of zinc in modulating lithium induced biochemical and behavioral changes in rat brain. Cell Mol Neurobiol. 2007; 27(5): 595-607. doi: 10.1007/s10571-007-9146-0
31.    Chadha VD, Bhalla P, Dhawan DK. Zinc modulates lithium-induced hepatotoxicity in rats. Liver Int. 2008; 28(4): 558-65. doi: 10.1080/01480540500408507
32.    Chen L, Ma L, Bai Q, Zhu X, Zhang J, Wei Q, Li D, Gao C, Li J, Zhang Z, Liu C, He Z, Zeng X, Zhang A, Qu W, Zhuang Z, Chen W, Xiao Y. Heavy metal-induced metallothionein expression is regulated by specific protein phosphatase 2A complexes. J Biol Chem. 2014; 289(32): 22413–22426. doi: 10.1074/jbc.M114.548677
33.    Jakobsson E, Argüello-Miranda O, Chiu S-W, Fazal Z, Kruczek J, Nunez-Corrales S, Pandit S, Pritchet L. Towards a unified understanding of lithium action in basic biology and its significance for applied biology. J Membr Biol. 2017; 250: 587–604. doi: 10.1007/s00232-017-9998-2
34.    Yurinskaya VE, Moshkov AV, Goryachaya TS, Vereninov AA. Li/Na exchange and Li active transport in human lymphoid cells U937 cultured in lithium media. Cell Tissue Biol. 2014; 8: 80–90. doi: 10.1134/S1990519X1401012X
35.    Gitlin M. Lithium side effects and toxicity: prevalence and management strategies. Int J Bipolar Disord. 2016; 4: 27. doi: 10.1186/s40345-016-0068-y
36.    36 Tandon A, Bhalla P, Nagpaul JP, Dhawan DK. Effect of lithium on rat cerebrum under different dietary protein regimens. Drug Chem Toxicol. 2006; 29 (4): 333-344. doi: 10.1080/01480540600820122
37.    Bootman MD. Calcium Signaling. Cold Spring Harb Perspect Biol. 2012; 4(7): a011171. doi: 10.1101/cshperspect.a011171
38.    Dorflinger C, Fuller M. Lithium-induced hypercalcemia with normal parathyroid hormone: A case report. Ment Health Clin. 2019; 9(5): 318–321. doi: 10.9740/mhc.2019.09.318
39.    Meehan AD, Udumyan R, Kardell M, Landén M, Järhult J, Wallin G. Lithium-associated hypercalcemia: Pathophysiology, prevalence, management. World J Surg. 2018; 42(2): 415–424. doi: 10.1007/s00268-017-4328-5
40.    Roohani N, Hurrell R, Kelishadi R, Schulin R. Zinc and its importance for human health: An integrative review. J Res Med Sci. 2013; 18(2): 144–157.
41.    Inoue K, O’Bryant Z, Xiong Z-G. Zinc-permeable ion channels: effects on intracellular zinc dynamics and potential physiological/ pathophysiological significance. Curr Med Chem. 2015; 22(10): 1248-57. doi: 10.2174/0929867322666150209153750
42.    Wakabayashi T. Mechanism of the calcium-regulation of muscle contraction — In pursuit of its structural basis. Proc Jpn Acad Ser B Phys Biol Sci. 2015; 91(7): 321–350. doi: 10.2183/pjab.91.321
43.    Pathak R, Pathak A. Analysis of thyroidal enzymes activity in zinc supplemented lithium treated rats. J Adv Sci Res. 2021; 12(2): 192-196.


Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available