Author(s): Belal Al Shomali, Muhd Danish-Daniel

Email(s): mdda@umt.edu.my

DOI: 10.52711/0974-360X.2024.00894   

Address: Belal Al Shomali, Muhd Danish-Daniel*
Bioinformatics, ICAMB Institute of Climate Adaptation and Marine Biotechnology, University Malaysia Terengganu, Kuala Nerus, Malaysia.
*Corresponding Author

Published In:   Volume - 17,      Issue - 12,     Year - 2024


ABSTRACT:
Rhomboid proteases (Rho) are affected by amino acid composition, protein structure, oligomerization, strong contacts, salt bridges, and bonding patterns. Protein tertiary structure can change with a single amino acid substitution. Rhomboids cleave misfolded membrane substrates. They help signal growth factors, maintain mitochondrial homeostasis, regulate protein quality, and invade parasites. Studying these proteins and their inhibitors will improve the medication targeting of this rhomboid protease, which is involved in the pathophysiology of numerous disorders like type II diabetes and Parkinson's. Their importance in eukaryotes is widely known, but their involvement in bacterial physiology is not. Rho genes are studied using Hot Springs metagenomic samples. JGI and IMG provided thermophilic protease sequences. MAFFT-aligned sequences. InterProScan examined every protein domain, whereas ProtParam calculated protease amino acid frequencies. I-TASSER predicts three-dimensional protein structures; CB-Dock, and Discovery Studio simulate and dock. Hot spring isolates in rhomboid gene alignments hindered the protein's evolution at high temperatures. Isolations conserved amino acid composition and active domains. Rhomboids' fundamental structure and functional locations have stayed intact across most life forms, preserving their proteolytic action. Asn 62, Trp 57, Ile 143, Phe (61, 100), Leu 99, and Arg 284 were critical in hot spring Rho genes. The fact that Rho inhibitors are active on hot spring rhomboids suggests that the enzyme has maintained a high degree of structural and functional homogeneity despite its presence in hot environments.


Cite this article:
Belal Al Shomali, Muhd Danish-Daniel. Hot springs as a Source for Studying Rhomboid Protease Genes and Inhibitors in Silico Study. Research Journal Pharmacy and Technology. 2024;17(12):5890-0. doi: 10.52711/0974-360X.2024.00894

Cite(Electronic):
Belal Al Shomali, Muhd Danish-Daniel. Hot springs as a Source for Studying Rhomboid Protease Genes and Inhibitors in Silico Study. Research Journal Pharmacy and Technology. 2024;17(12):5890-0. doi: 10.52711/0974-360X.2024.00894   Available on: https://rjptonline.org/AbstractView.aspx?PID=2024-17-12-31


REFERENCE:
1.    Yin W, Wang Y, Liu L, He J. Biofilms: the microbial “protective clothing” in extreme environments. International Journal of Molecular Sciences. 2019; 20(14): 3423.
2.    Devi R, Kaur T, Kour D, Rana KL, Yadav A, Yadav AN. Beneficial fungal communities from different habitats and their roles in plant growth promotion and soil health. Microbial Biosystems. 2020; 5(1): 21-47.
3.    Gizaw B. Potential Microbial Ecologyin Ethiopia and Ex-situ Conservation Effort. 2018.
4.    Waugh DW. Fluid Dynamics of Polar Vortices on Earth, Mars, and Titan. Annual Review of Fluid Mechanics. 2022; 55.
5.    Erfurt P. The Geology of Hot Springs. The Geoheritage of Hot Springs: Springer; 2021. p. 17-50.
6.    Zabulica M. Modelling and Genetic Correction of Liver Genetic Diseases: Karolinska Institutet (Sweden); 2021.
7.    Arbige MV, Shetty JK, Chotani GK. Industrial enzymology: the next chapter. Trends in biotechnology. 2019; 37(12): 1355-66.
8.    Prayogo FA, Budiharjo A, Kusumaningrum HP, Wijanarka W, Suprihadi A, Nurhayati N. Metagenomic applications in exploration and development of novel enzymes from nature: a review. Journal of Genetic Engineering and Biotechnology. 2020; 18(1): 1-10.
9.    Chong J, Liu P, Zhou G, Xia J. Using MicrobiomeAnalyst for comprehensive statistical, functional, and meta-analysis of microbiome data. Nature Protocols. 2020; 15(3): 799-821.
10.    Lear G, Dickie I, Banks J, Boyer S, Buckley HL, Buckley TR, et al. Methods for the extraction, storage, amplification and sequencing of DNA from environmental samples. New Zealand Journal of Ecology. 2018; 42(1): 10-50A.
11.    Cruz-Casas DE, Aguilar CN, Ascacio-Valdés JA, Rodríguez-Herrera R, Chávez-González ML, Flores-Gallegos AC. Enzymatic hydrolysis and microbial fermentation: The most favorable biotechnological methods for the release of bioactive peptides. Food Chemistry: Molecular Sciences. 2021; 3: 100047.
12.    Naveed M, Nadeem F, Mehmood T, Bilal M, Anwar Z, Amjad F. Protease—a versatile and ecofriendly biocatalyst with multi-industrial applications: an updated review. Catalysis Letters. 2021; 151(2): 307-23.
13.    Matkawala F, Nighojkar S, Kumar A, Nighojkar A. Microbial alkaline serine proteases: Production, properties and applications. World Journal of Microbiology and Biotechnology. 2021; 37(4): 1-12.
14.    Began J. Rhomboid family intramembrane proteases in prokaryotes: mechanism, substrate repertoires and biological functions in the Gram-positive bacterium Bacillus subtilis. 2020.
15.    Almeida Hernandez Y. Integrative analysis of the dynamics of rhomboid protease GlpG from Escherichia coli: Staats-und Universitätsbibliothek Hamburg Carl von Ossietzky; 2019.
16.    Chen I-MA, Chu K, Palaniappan K, Pillay M, Ratner A, Huang J, et al. IMG/M v. 5.0: an integrated data management and comparative analysis system for microbial genomes and microbiomes. 2019;47(D1):D666-D77.
17.    Li W, Fu L, Niu B, Wu S, Wooley JJBib. Ultrafast clustering algorithms for metagenomic sequence analysis. 2012; 13(6): 656-68.
18.    Letunic I, Bork PJNar. Interactive Tree Of Life v2: online annotation and display of phylogenetic trees made easy. 2011; 39(suppl_2):W475-W8.
19.    Chowdhury B, Garai GJG. A review on multiple sequence alignment from the perspective of genetic algorithm. 2017; 109(5-6): 419-31.
20.    Chatzou M, Magis C, Chang J-M, Kemena C, Bussotti G, Erb I, et al. Multiple sequence alignment modeling: methods and applications. 2016; 17(6): 1009-23.
21.    Garg VK, Avashthi H, Tiwari A, Jain PA, Ramkete PW, Kayastha AM, et al. MFPPI–multi FASTA ProtParam interface. 2016; 12(2): 74.
22.    Quevillon E, Silventoinen V, Pillai S, Harte N, Mulder N, Apweiler R, et al. InterProScan: protein domains identifier. 2005; 33(suppl_2): W116-W20.
23.    Liu Y, Li J, Yang J, Zeng H, Guo L, Ren S, et al. Emergence of Different Recombinant Porcine Reproductive and Respiratory Syndrome Viruses, China. Scientific Reports. 2018; 8(1): 4118.
24.    Cueno ME, Ueno M, Iguchi R, Harada T, Miki Y, Yasumaru K, et al. Insights on the Structural Variations of the Furin-Like Cleavage Site Found Among the December 2019–July 2020 SARS-CoV-2 Spike Glycoprotein: A Computational Study Linking Viral Evolution and Infection. Frontiers in Medicine. 2021; 8: 240.
25.    Xu D, Zhang Y. Improving the physical realism and structural accuracy of protein models by a two-step atomic-level energy minimization. Biophysical Journal. 2011; 101(10): 2525-34.
26.    Volkamer A, Kuhn D, Rippmann F, Rarey M. DoGSiteScorer: a web server for automatic binding site prediction, analysis and druggability assessment. Bioinformatics. 2012; 28(15): 2074-5.
27.    Weininger D. SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. Journal of Chemical Information and Computer Sciences. 1988; 28(1): 31-6.
28.    Khatik GL. Identification of Possible Molecular Targets of Potential Anti-Alzheimer Drugs by Predicting their Binding Affinities Using Molecular Docking Technique. International Journal of Green Pharmacy (IJGP). 2018; 12(02).
29.    Avupati VR, Kurre PN, Bagadi SR, Muthyala MK, Yejella RP. De novo based ligand generation and docking studies of PPARδ agonists: Correlations between predicted biological activity vs. biopharmaceutical descriptors. Chem-Bio Informatics Journal. 2010; 10: 74-86.
30.    Rowaiye AB, Olubiyi J, Bur D, Uzochukwu IC, Akpa A, Esimone CO. In silico screening and molecular dynamic simulation studies of potential small molecule immuno-modulators of the KIR2DS2 receptor. Journal of Phytomedicine and Therapeutics. 2021; 20(1): 542–67-–67.
31.    Ohanyan S, Grabski H, Rshtuni L, Tiratsuyan S, Hovhannisyan A, editors. Improvement of the Antibacterial Activity of Benzylpenicillin in combination with Green Silver Nanoparticles against Staphylococcus aureus. International Conference on Nanotechnologies and Biomedical Engineering; 2019: Springer.
32.    Liu Y, Grimm M, Dai W-t, Hou M-c, Xiao Z-X, Cao Y. CB-Dock: a web server for cavity detection-guided protein–ligand blind docking. Acta Pharmacologica Sinica. 2020; 41(1): 138-44.
33.    Dharmasiri B, Senanayake G, Perera P, Halmillawewa A, Attanayake R, editors. Evaluation of Lignin Degrading Ability and In-silico Analysis and Molecular Docking of Laccase of Schizophyllum commune with Lignin. Proceedings of International Forestry and Environment Symposium; 2022.
34.    Sharma S, Sharma A, Gupta U. Molecular Docking studies on the Anti-fungal activity of Allium sativum (Garlic) against Mucormycosis (black fungus) by BIOVIA discovery studio visualizer 21.1. 0.0. Annals of Antivirals and Antiretrovirals. 2021; 5(1): 028-32.
35.    Qingyu C, Yu W, Yang L, Zobel J, Verspoor K, editors. Evaluation of CD-HIT for constructing non-redundant databases. 2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM); 2016; 15-18 Dec. 2016.
36.    Koonin EV, Makarova KS, Rogozin IB, Davidovic L, Letellier M-C, Pellegrini LJGb. The rhomboids: a nearly ubiquitous family of intramembrane serine proteases that probably evolved by multiple Ancient Horizontal gene Transfers. 2003; 4(3): 1-12.
37.    Kumar S, Dangi AK, Shukla P, Baishya D, Khare SKJBt. Thermozymes: Adaptive strategies and tools for their Biotechnological Applications. 2019; 278: 372-82.
38.    Hait S, Mallik S, Basu S, Kundu SJPS, Function,, Bioinformatics. Finding the generalized molecular principles of protein thermal stability. 2020; 88(6): 788-808.
39.    Raymond-Bouchard I, Goordial J, Zolotarov Y, Ronholm J, Stromvik M, Bakermans C, et al. Conserved genomic and amino acid traits of cold adaptation in subzero-growing Arctic permafrost bacteria. FEMS Microbiology Ecology. 2018; 94(4).
40.    Xie B-B, Bian F, Chen X-L, He H-L, Guo J, Gao X, et al. Cold adaptation of zinc metalloproteases in the thermolysin family from deep sea and arctic sea ice bacteria revealed by catalytic and structural properties and molecular dynamics new insights into relationship between conformational flexibility and hydrogen Bonding. 2009; 284(14): 9257-69.
41.    Betts MJ, Russell RBJBfg. Amino acid properties and consequences of substitutions. 2003; 317: 289.
42.    Ingle RAJTABASoPB. Histidine Biosynthesis. 2011;9.
43.    García-Lorenzo M, Sjödin A, Jansson S, Funk C. Protease gene families in Populus and Arabidopsis. BMC Plant Biology. 2006; 6(1): 30.
44.    Wang Y, Zhang Y, Ha YJN. Crystal structure of a rhomboid family intramembrane Protease. 2006; 444(7116): 179-80.
45.    Marx J, Collins T, D’Amico S, Feller G, Gerday CJMb. Cold-adapted enzymes from marine Antarctic Microorganisms. 2007; 9(3): 293-304.
46.    Jongruja N, You DJ, Angkawidjaja C, Kanaya E, Koga Y, Kanaya S. Structure and characterization of RNase H3 from Aquifex aeolicus. The FEBS Journal. 2012; 279(15): 2737-53.
47.    Siliakus MF, van der Oost J, Kengen SW. Adaptations of archaeal and bacterial membranes to variations in temperature, pH and pressure. Extremophiles. 2017; 21(4): 651-70.
48.    D'Amico S, Collins T, Marx JC, Feller G, Gerday C, Gerday CJEr. Psychrophilic microorganisms: challenges for life. 2006; 7(4): 385-9.
49.    Ratkowsky DA, Olley J, Ross TJJotb. Unifying temperature effects on the growth rate of bacteria and the stability of globular proteins. 2005; 233(3): 351-62.
50.    Tribelli PM, López NIJL. Reporting key features in cold-adapted bacteria. 2018; 8(1): 8.
51.    Xu D, Zhang J, Roy A, Zhang Y. Automated protein structure modeling in CASP9 by I‐TASSER pipeline combined with QUARK‐based ab initio folding and FG‐MD‐based structure refinement. Proteins: Structure, Function, and Bioinformatics. 2011; 79(S10): 147-60.
52.    Yang J, Zhang Y. I-TASSER server: new development for protein structure and function predictions. Nucleic Acids Research. 2015; 43(W1): W174-W81.
53.    Iqrar U, Javaid H, Ashraf N, Ahmad A, Latief N, Shahid AA, et al. Structural and functional analysis of pullulanase type 1 (PulA) from Geobacillus thermopakistaniensis. Molecular Biotechnology. 2020; 62(8): 370-9.
54.    Li Y, Zhang C, Zheng W, Zhou X, Bell EW, Yu DJ, et al. Protein inter‐residue contact and distance prediction by coupling complementary coevolution features with deep residual networks in CASP14. Proteins: Structure, Function, and Bioinformatics. 2021; 89(12): 1911-21.
55.    Sharma P, Joshi T, Joshi T, Mathpal S, Maiti P, Nand M, et al. In silico screening of natural compounds to inhibit interaction of human ACE2 receptor and spike protein of SARS-CoV-2 for the prevention of COVID-19. Journal of Biomolecular Structure and Dynamics. 2021: 1-13.
56.    Rudden LS, Degiacomi MT. Protein docking using a single representation for protein surface, electrostatics, and local dynamics. Journal of Chemical Theory and Computation. 2019; 15(9): 5135-43.
57.    Aretz J, Wamhoff E-C, Hanske J, Heymann D, Rademacher C. Computational and experimental prediction of human C-type lectin receptor druggability. Frontiers in Immunology. 2014; 5: 323.
58.    Lima AN, Philot EA, Trossini GHG, Scott LPB, Maltarollo VG, Honorio KM. Use of machine learning approaches for novel drug discovery. Expert Opinion on Drug Discovery. 2016; 11(3): 225-39.
59.    Volkamer A, Eid S, Turk S, Jaeger S, Rippmann F, Fulle S. Pocketome of human kinases: prioritizing the ATP binding sites of (yet) untapped protein kinases for drug discovery. Journal of Chemical Information and Modeling. 2015; 55(3): 538-49.
60.    Mirzaei H, Zarbafian S, Villar E, Mottarella S, Beglov D, Vajda S, et al. Energy Minimization on Manifolds for Docking Flexible Molecules. J Chem Theory Comput. 2015; 11(3): 1063-76.
61.    Cournia Z, Allen BK, Beuming T, Pearlman DA, Radak BK, Sherman W. Rigorous free energy simulations in virtual screening. Journal of Chemical Information and Modeling. 2020; 60(9): 4153-69.
62.    Drexler KE. Molecular machinery and manufacturing with applications to computation: Massachusetts Institute of Technology; 1991.
63.    Harper PM, Gani R, Kolar P, Ishikawa T. Computer-aided molecular design with combined molecular modeling and group contribution. Fluid Phase Equilibria. 1999; 158: 337-47.
64.    Chandra A, Ghate MV, Aithal K, Lewis SA. In silico prediction coupled with in vitro experiments and absorption modeling to study the inclusion complex of telmisartan with modified beta-cyclodextrin. Journal of Inclusion Phenomena and Macrocyclic Chemistry. 2018; 91(1): 47-60.
65.    Rowaiye AB, Oni S, Uzochukwu IC, Akpa A, Esimone CO. The Structure-Based Virtual Screening for Natural Compounds that Bind with the Activating Receptors of Natural Killer Cells. bioRxiv. 2020:2020.06.19.160861.
66.    Claranciaa PS, Naveenarania M, Valarmathia R, Sureshaa G, Hemaprabhaa G, Rama B, et al. Isolation, characterization and expression analysis of novel water deficit stress-responsive DEEPER ROOTING 1 (DRO1) gene from drought-tolerant Erianthus arundinaceus. Journal of Sugarcane Research. 2020; 10(1): 1-11.
67.    Torres PH, Sodero AC, Jofily P, Silva-Jr FP. Key topics in molecular docking for drug design. International Journal of Molecular Sciences. 2019; 20(18): 4574.
68.    Sepay N, Saha PC, Shahzadi Z, Chakraborty A, Halder UC. A crystallography-based investigation of weak interactions for drug design against COVID-19. Physical Chemistry Chemical Physics. 2021; 23(12): 7261-70.
69.    Dhorajiwala TM, Halder ST, Samant L. Comparative in silico molecular docking analysis of l-threonine-3-dehydrogenase, a protein target against African trypanosomiasis using selected phytochemicals. Journal of Applied Biotechnology Reports. 2019; 6(3): 101-8.
70.    Kandasamy S, Duraisamy S, Chinnappan S, Balakrishnan S, Thangasamy S, Muthusamy G, et al. Molecular modeling and docking of protease from Bacillus sp. for the keratin degradation. Biocatalysis and Agricultural Biotechnology. 2018; 13: 95-104.


Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available