Author(s): Chandrappa Chinna Poojari, Sanjana, Levin Anbu Gomez, Saba Shirin, Ankit Kumar, Gangadahosahalli Krishnegowda Puneetha, Praveen Kumar Guttula, Rajkumar Sekar, Prathap Somu, Akhilesh Kumar Yadav

Email(s): yadavbasti@gmail.com , prathaps1987@gmail.com

DOI: 10.52711/0974-360X.2024.00885   

Address: Chandrappa Chinna Poojari1, Sanjana1, Levin Anbu Gomez2, Saba Shirin3,4, Ankit Kumar5, Gangadahosahalli Krishnegowda Puneetha6, Praveen Kumar Guttula7, Rajkumar Sekar8, Prathap Somu9*, Akhilesh Kumar Yadav10,11*
1Department of Microbiology, Shridevi Institute of Allied Health Sciences, Tumakuru, 572106, India.
2Division of Biotechnology, School of Agricultural Sciences, Karunya Institute of Technology and Sciences, Karunya Nagar, Coimbatore, 641114, India.
3Department of Environmental Science, School of Vocational Studies and Applied Sciences, Gautam Buddha University, Greater Noida, 201312, India.
4Department of Mining Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India.
5Lohum Cleantech Pvt. Ltd., Kasna Industrial Area, D-184, Site V, Greater Noida, 201306, India.
6Department of Botany, Yuvaraja’s College, University of Mysore, Mysuru, 570005, India.
7Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ot

Published In:   Volume - 17,      Issue - 12,     Year - 2024


ABSTRACT:
Neuroactive peptides derived from venomous species have proven to be used as a lead compound for treating neurological diseases. In the present study, the primary structure of the peptide toxins of snakes, scorpions, spiders, cone snails, honey bees, and sea anemones was recovered from different toxin databases. The 3-D structures of the peptide toxins were analyzed with respect to secondary structural elements such as cysteine patterns and disulfide connectivity’s using PYMOL. Their interaction with ion channels/receptors was studied because of its pharmacological importance. The toxins retrieved were found to have – C–Xn–C–Xn–CC–Xn–C–Xn–C-- cysteine pattern for n=1 that was the same --C---C---CC---C---C— cysteine pattern of ?-conotoxin and hanatoxin, but with a varying intervening non-cysteine residue between cysteines. Hence, these provide insight for structure-based drug design using these peptide toxin scaffolds. Given the optimal molecular weight and specificity of peptides compared to conventional small molecule drugs, peptides are considered future next-generation drug candidates.


Cite this article:
Chandrappa Chinna Poojari, Sanjana, Levin Anbu Gomez, Saba Shirin, Ankit Kumar, Gangadahosahalli Krishnegowda Puneetha, Praveen Kumar Guttula, Rajkumar Sekar, Prathap Somu, Akhilesh Kumar Yadav. Identification of Neuroactive Peptide from Venomous Species using Structural Analysis: A Possible Neuronal Therapeutic Candidate. Research Journal Pharmacy and Technology. 2024;17(12):5825-8. doi: 10.52711/0974-360X.2024.00885

Cite(Electronic):
Chandrappa Chinna Poojari, Sanjana, Levin Anbu Gomez, Saba Shirin, Ankit Kumar, Gangadahosahalli Krishnegowda Puneetha, Praveen Kumar Guttula, Rajkumar Sekar, Prathap Somu, Akhilesh Kumar Yadav. Identification of Neuroactive Peptide from Venomous Species using Structural Analysis: A Possible Neuronal Therapeutic Candidate. Research Journal Pharmacy and Technology. 2024;17(12):5825-8. doi: 10.52711/0974-360X.2024.00885   Available on: https://rjptonline.org/AbstractView.aspx?PID=2024-17-12-22


REFERENCES:
1.    R. J. McCleary and R. M. Kini, Non-enzymatic proteins from snake venoms: a gold mine of Pharmacological tools and drug leads. Toxicon. 2013; 62: 56-74.
2.    R. C. R. de la Vega, E. F. Schwartz and L. D. Possani, Mining on scorpion venom biodiversity. Toxicon. 2010; 56: 1155-1161.
3.    J. J. Smith, V. Herzig, G. F. King and P. F. Alewood, The insecticidal potential of venom peptides. Cellular and Molecular Life Sciences. 2013; 70: 3665-3693.
4.    B. M. Olivera, P. Showers Corneli, M. Watkins and A. Fedosov, Biodiversity of cone snails and other venomous marine gastropods: evolutionary success through neuropharmacology, Annu. Rev. Anim. Biosci. 2014; 2: 487-513.
5.    H. Terlau and B. M. Olivera, Conus venoms: a rich source of novel ion channel-targeted peptides. Physiological Reviews. 2004.
6.    R. J. Lewis and M. L. Garcia, Therapeutic potential of venom peptides. Nature Reviews Drug Discovery. 2003; 2: 790-802.
7.    P. Escoubas, Molecular diversification in spider venoms: a web of combinatorial peptide libraries. Molecular Diversity. 2006; 10: 545-554.
8.    B. L. Sollod, D. Wilson, O. Zhaxybayeva, J. P. Gogarten, R. Drinkwater and G. F. King, Were arachnids the first to use combinatorial peptide libraries? Peptides. 2005; 26: 131-139.
9.    B. M. Olivera, D. R. Hillyard, M. Marsh and D. Yoshikami, Combinatorial peptide libraries in drug design: lessons from venomous cone snails. Trends in Biotechnology. 1995; 13: 422-426.
10.    O. Buczek, G. Bulaj and B. Olivera, Conotoxins and the posttranslational modification of secreted gene products, Cellular and Molecular Life Sciences CMLS. 2005; 62: 3067-3079.
11.    P. C. V. Govindu, P. Chakraborty, A. Dutta and K. H. Gowd, Structural space of intramolecular peptide disulfides: Analysis of peptide toxins retrieved from venomous peptide databases, Computational Biology and Chemistry. 2017; 68: 194-203.
12.    Q. Kaas, R. Yu, A.-H. Jin, S. Dutertre and D. J. Craik, ConoServer: updated content, knowledge, and discovery tools in the conopeptide database, Nucleic Acids Research. 2012; 40: D325-D330.
13.    F. Jungo, L. Bougueleret, I. Xenarios and S. Poux, The UniProtKB/Swiss-Prot Tox-Prot program: a central hub of integrated venom protein data, Toxicon. 2012; 60: 551-557.
14.    V. Herzig, D. L. Wood, F. Newell, P.-A. Chaumeil, Q. Kaas, G. J. Binford, G. M. Nicholson, D. Gorse and G. F. King, ArachnoServer 2.0, an updated online resource for spider toxin sequences and structures. Nucleic Acids Research. 2010; 39: D653-D657.
15.    Q.-Y. He, Q.-Z. He, X.-C. Deng, L. Yao, E. Meng, Z.-H. Liu and S.-P. Liang, ATDB: a uni-database platform for animal toxins. Nucleic Acids Research. 2007; 36: D293-D297.
16.    J. B. Jordan, L. Poppe, M. Haniu, T. Arvedson, R. Syed, V. Li, H. Kohno, H. Kim, P. D. Schnier and T. S. Harvey, Hepcidin revisited, disulfide connectivity, dynamics, and structure. Journal of Biological Chemistry. 2009; 284: 24155-24167.
17.    A. Albert, J. J. Eksteen, J. Isaksson, M. Sengee, T. Hansen and T. Vasskog, General approach to determine disulfide connectivity in cysteine-rich peptides by sequential alkylation on solid phase and mass spectrometry. Analytical Chemistry. 2016; 88: 9539-9546.
18.    P. K. Pallaghy, R. S. Norton, K. J. Nielsen and D. J. Craik, A common structural motif incorporating a cystine knot and a triple‐stranded β‐sheet in toxic and inhibitory polypeptides. Protein Science. 1994; 3: 1833-1839.
19.    J. C. Gelly, J. Gracy, Q. Kaas, D. Le‐Nguyen, A. Heitz and L. Chiche, The KNOTTIN website and database: a new information system dedicated to the knottin scaffold. Nucleic acids Research. 2004; 32: D156-D159.
20.    S. Ahmad, M. Gromiha, H. Fawareh and A. Sarai, ASAView: database and tool for solvent accessibility representation in proteins. BMC Bioinformatics. 2004; 5: 51.


Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available