Author(s): Amr A. El-Waseif, Mohamed Abd-El Razik, Rabea A. Abobaker, Ferial M. Emam, Mervat G. Hassan

Email(s): amrelwaseif@azhar.edu.eg

DOI: 10.52711/0974-360X.2024.00882   

Address: Amr A. El-Waseif1*, Mohamed Abd-El Razik2, Rabea A. Abobaker2, Ferial M. Emam2, Mervat G. Hassan3
1Botany and Microbiology Dept., Faculty of Science (Boys), Al-Azhar University, Cairo, Egypt.
2Botany and Microbiology Dept., Faculty of Science, Suez Canal University, Egypt.
3Botany and Microbiology Dept., Faculty of Science, Banha University, Egypt.
*Corresponding Author

Published In:   Volume - 17,      Issue - 12,     Year - 2024


ABSTRACT:
In the current work the Taguchi experimental design was applied to maximize the yield of exopolysaccharide (EPS) from Lactobacillus brevis. The Taguchi modelwas employed to reduce the time and experimental procedures needed to optimize the various factors influencing its manufacture. In addition to minimizing the number of trials and material requirements needed for EPS synthesis. An orthogonal array arrangement of L27(36) was carried out using six factors: the pH of the Lactobacillus brevis culture, the temperature (°C), the incubation time (h), the inoculum size (µl), the volume (ml), and the glucose (%), each at three levels. Our findings showed that the ideal incubation parameters were pH 6.5 for the Lactobacillus brevis culture, 20°C for the culture, 24 hours for the incubation, 150µl for the inoculum size, 5ml for volume, and 2% for glucose. These together resulted in the best EPS generation by Lactobacillus brevis. The Taguchi experimental models' optimization of EPS production highlighted several significant findings on the interplay of the various driving factors resulting in the optimum EPS output in a single experiment. It is possible to refine the approach and raise the EPS weight. Applying the Taguchi modelin the biosynthetic EPS pathway, the synthesis of EPS increased to 560 mg/L from the basal condition of 376mg/L.


Cite this article:
Amr A. El-Waseif, Mohamed Abd-El Razik, Rabea A. Abobaker, Ferial M. Emam, Mervat G. Hassan. Optimization of Prebiotic Exopolysaccharide production from Probiotic Lactobacillus brevis using Taguchi Experimental Design. Research Journal Pharmacy and Technology. 2024;17(12):5803-8. doi: 10.52711/0974-360X.2024.00882

Cite(Electronic):
Amr A. El-Waseif, Mohamed Abd-El Razik, Rabea A. Abobaker, Ferial M. Emam, Mervat G. Hassan. Optimization of Prebiotic Exopolysaccharide production from Probiotic Lactobacillus brevis using Taguchi Experimental Design. Research Journal Pharmacy and Technology. 2024;17(12):5803-8. doi: 10.52711/0974-360X.2024.00882   Available on: https://rjptonline.org/AbstractView.aspx?PID=2024-17-12-19


REFERENCES:
1.    Plessas, S.; Kiousi, D.E.; Rathosi, M.; Alexopoulos, A.; Kourkoutas, Y.; Mantzourani, I.; Galanis, A.; Bezirtzoglou, E. Isolation of a Lactobacillus paracasei Strain with Probiotic Attributes from Kefir Grains. Biomedicines. 2020, 8, 594.
2.    Pourbaferani, M.; Modiri, S.; Norouzy, A.; Maleki, H.; Heidari, M.; Alidoust, L.; Derakhshan, V.; Zahiri, H.S.; Noghabi, K.A. A Newly Characterized Potentially Probiotic Strain, Lactobacillus brevisMK05, and the Toxicity Effects of its Secretory Proteins Against MCF-7 Breast Cancer Cells. Probiotics Antimicrob. Proteins. 2021; 13: 982–992.
3.    El-Waseif, A. A., Abobaker, R. A., Abdel-Monem, M. O., Attia, A. A., Hassan, M. G. The Lactobacillus brevis Prebiotic Pure Exo polysaccharide and its Nano crystalline Characterization, anti-colon cancer and cytotoxicity. Research Journal of Pharmacy and Technology. 2021; 14(11): 5998-6002.‏
4.    Yelin, I.; Flett, K.B.; Merakou, C.; Mehrotra, P.; Stam, J.; Snesrud, E.; Hinkle, M.; Lesho, E.; McGann, P.; McAdam, A.J.; et al. Genomic and epidemiological evidence of bacterial transmission from probiotic capsule to blood in ICU patients. Nat. Med. 2019; 25: 1728–1732.
5.    Huber, M.; Mossmann, H.; Bessler, W.G. Th1-orientated immunological properties of the bacterial extract OM-85-BV. Eur. J. Med. Res. 2005; 10: 209–217.
6.    Qadah, A. M., El-Waseif, A., Yehia, H. Novel use of probiotic as acetylcholine esterase inhibitor and a new strategy for activity optimization as a biotherapeutic agent. Journal of Applied Biology and Biotechnology. 2023; 11(6): 202-215.‏
7.    Hassan, M. G., El-Waseif, A. A., Arief, O. M., El-Maaty, S. A. A. Assessment of Antibacterial, Cytotoxicity and Wound Healing Influence of Copper Nanoparticles Synthesized using Probiotic Bacteria. Research Journal of Pharmacy and Technology, 2023; 16(10): 4537-4542.‏
8.    Abd-Elwahed, E. S., El-Waseif, A. A., Maany, D. A. Biosynthesis and FPLC purification of antibacterial peptide from the biotherapeutic agent Enterococcus faecium. Egyptian Pharmaceutical Journal. 2023; 22(2): 202-208.‏
9.    Hegazy, A. W. A., El-Waseif, A. A., Maany, D. A. Isolation, characterization, and molecular identification of probiotics showing promising hypoglycemia operating activities. Egyptian Pharmaceutical Journal. 2023; 22(1):105-110.‏
10.    El-Waseif, A. A., Roshdy, T. Y., Abdel-Monem, M. O., Hassan, M. G. Taguchi design analysis for optimization of probiotics cholesterol assimilation. Materials Today: Proceedings. 2022; 61: 1154-1157.‏
11.    El-Waseif, A. A., Gaber, H. S., Ewais, E. A. Hypocholesterolemic Operating Parameters of Novel Probiotics In vitro. Research Journal of Pharmacy and Technology. 2021; 14(10): 5197-5201.‏
12.    Ruas-Madiedo, P.; Salazar, N.; De los Reyes-Gavilan, C. Biosynthesis and chemical composition of exopolysaccharides produced by lactic acid bacteria. Bact. Polysacch. Curr.Innov. Future Trends. 2009: 279–310.
13.    Maany, D. A., El-Waseif, A. A., Abdelall, M. F. Elusive function of dental plaque polysaccharide produced from Kocuriarosae and it’s molecular signature. Egyptian Pharmaceutical Journal. 2019; 18(1): 60.‏
14.    Bachtarzi, N.; Speciale, I.; Kharroub, K.; De Castro, C.; Ruiz, L.; Ruas-Madiedo, P. Selection of Exopolysaccharide-Producing Lactobacillus Plantarum (Lactiplantibacillusplantarum) Isolated from Algerian Fermented Foods for the Manufacture of Skim-Milk Fermented Products. Microorganisms. 2020; 8: 1101.
15.    Daba, G.M.; Elnahas, M.O.; Elkhateeb,W.A. Contributions of exopolysaccharides from lactic acid bacteria as biotechnological tools in food, pharmaceutical, and medical applications. Int. J. Biol. Macromol. 2021; 173: 79–89.
16.    Yalmanci, D.; Dertli, E.; Tekin-Cakmak, Z.H.; Karasu, S. Utilization of exopolysaccharide produced by Leuconostoclactis GW-6 as an emulsifier for low-fat mayonnaise production. Int. J. Biol. Macromol. 2023; 226: 772–779.
17.    Sran, K.S.; Sundharam, S.S.; Krishnamurthi, S.; Roy Choudhury, A. Production, characterization and bio-emulsifying activity of a novel thermostableexopolysaccharide produced by a marine strain of Rhodobacterjohrii CDR-SL 7Cii. Int. J. Biol. Macromol. 2019: 127; 240–249.
18.    Zhang, L.; Liu, C.; Li, D.; Zhao, Y.; Zhang, X.; Zeng, X.; Yang, Z.; Li, S. Antioxidant activity of an exopolysaccharide isolated from Lactobacillus plantarumC88. Int. J. Biol. Macromol. 2013; 54: 270–275.
19.    Cheng, X.; Huang, L.; Li, K.T. Antioxidant activity changes of exopolysaccharides with different carbon sources from Lactobacillus plantarumLPC-1 and its metabolomic analysis. World J. Microbiol.Biotechnol. 2019; 35: 13.
20.    Bengoa, A.A.; Llamas, M.G.; Iraporda, C.; Duenas, M.T.; Abraham, A.G.; Garrote, G.L. Impact of growth temperature on exopolysaccharide production and probiotic properties of Lactobacillus paracasei strains isolated from kefir grains. Food Microbiol. 2018; 69: 212–218.
21.    Wang, X.; Shao, C.; Liu, L.; Guo, X.; Xu, Y.; Lu, X. Optimization, partial characterization and antioxidant activity of an exopolysaccharide from Lactobacillus plantarum KX041. Int. J. Biol. Macromol. 2017; 103: 1173–1184.
22.    Oleksy-Sobczak, M.; Klewicka, E.; Piekarska-Radzik, L. Exopolysaccharides production by Lactobacillus rhamnosus strains- Optimization of synthesis and extraction conditions. Lwt-Food Sci. Technol. 2020; 122: 109055.
23.    Angelin, J.; Kavitha, M. Exopolysaccharides from probiotic bacteria and their health potential. Int. J. Biol. Macromol. 2020; 162: 853–865.
24.    Lynch, K.M.; Zannini, E.; Coffey, A.; Arendt, E.K. Lactic Acid Bacteria Exopolysaccharides in Foods and Beverages: Isolation, Properties, Characterization, and Health Benefits. Annu. Rev. Food Sci. Technol. 2018; 9: 155–176.
25.    Bezerra M. A, Santelli RE, Oliveira EP, Villar LS, Escaleira LA. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta. 2008; 76 (5): 965–977.
26.    Teo´ filo RF., M.M.C Ferreira MMC. Chemometrics II: spreadsheets for calculations of experimental planning, a tutorial. Quim Nova. 2006; 29 (2): 338–350.
27.    Zhang, J, Fan Y, Smith E. Experimental design for the optimization of lipid nanoparticles. J. Pharm. Sci., 2009; 98(5): 1813-1819.
28.    De Man J.C., Rogosa M. and Sharpe E. A medium for the cultivation of Lactobacilli. J. Appl. Bacteriol. 1960; 23: 130-135.
29.    Cerning J., Renard C., Thibault J. F., Bouillanne C., Landon M., Desmazeaud M. and Topisirovic L. Carbon source requirements for exopolysaccharide production by Lactobacillus caseiCG11 and partial structure analysis of the polymer. Appl. Environ. Microbiol.1994; 60: 3914-3919.
30.    El-Ghwas DE, Mazeed TE, El-Waseif AA, Al-Zahrani HA, Almaghrabi OA, Elazzazy AM. Factorial experimental design for optimization of zinc oxide nanoparticles production. Curr Nanosci. 2020; 16: 51-61.
31.    Wang, J., Zhang, J., Guo, H., Cheng, Q., Abbas, Z., Tong, Y., Zhang, R. Optimization of Exopolysaccharide Produced by Lactobacillus plantarum R 301 and Its Antioxidant and Anti-Inflammatory Activities. Foods. 2023; 12(13): 2481.‏
32.    Ermiş, E., Poyraz, E., Dertli, E., Yılmaz, M. T. Optimization of exopolysaccharide production of Lactobacillus brevis E 25 using RSM and characterization. Sakarya University Journal of Science. 2020; 24(1): 151-160.‏
33.    Choi, G. H., Lee, N. K., Paik, H. D. Optimization of medium composition for biomass production of Lactobacillus plantarum 200655 using response surface methodology. Journal of Microbiology and Biotechnology. 2021; 31(5): 717–725.‏




Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available