Author(s): Koyuki Atifa Rahmi, Mohammad Saifur Rohman, Sharida Fakurazi, Husnul Khotimah, Hidayat Sujuti

Email(s): hidayatsujuti@gmail.com

DOI: 10.52711/0974-360X.2024.00875   

Address: Koyuki Atifa Rahmi1, Mohammad Saifur Rohman2, Sharida Fakurazi3, Husnul Khotimah4, Hidayat Sujuti5
1Master Program in Biomedical Sciences, Faculty of Medicine, Universitas Brawijaya, J1. Veteran, Ketawanggede, Lowokwaru, Malang City, East Java, Indonesia 65145.
2Department of Cardiology and Vascular Medicine, Faculty of Medicine Universitas Brawijaya - Saiful Anwar General Hospital, J1. Veteran, Ketawanggede, Lowokwaru, Malang City, East Java, Indonesia 65145.
3Department of Human Anatomy, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Jalan Universiti 1, Serdang, Selangor, Malaysia 43400.
4Department of Pharmacology, Faculty of Medicine, Universitas Brawijaya, J1. Veteran, Ketawanggede, Lowokwaru, Malang City, East Java, Indonesia 65145.
5Department of Ophthalmology, Faculty of Medicine Universitas Brawijaya - Saiful Anwar General Hospital, Jl. Veteran, Ketawanggede, Lowokwaru, Malang City, East Java, Indonesia 65145.
*Corresponding Author

Published In:   Volume - 17,      Issue - 12,     Year - 2024


ABSTRACT:
Background: Lithium is a first-line treatment for Bipolar Affective Disorder in pregnant women, but it has a narrow therapeutic range and has been shown to cause teratogenic effects on the foetus. This study aimed to investigate the molecular mechanism of lithium–induced heart and eye malformation during organogenesis. Methods: Zebrafish (Danio rerio) was used as the animal model. Zebrafish embryos were exposed to LiCl with concentrations of 0 (control), 3, 30, and 300mg/L from 1 hpf to 72 hpf. Expression of heart organogenesis-associated genes nkx2.5, nppa, and myl7, and Eye Field Transcription Factors six3a and rx3 were measured using qPCR. Heart and eye morphology were observed using light microscopy and assessed based on representative score assignment for zebrafish teratogenicity assay. Results: In heart organogenesis, LiCl caused significant upregulation of nkx2.5 expression and increased the incidence and severity of heart malformations and contractility malfunction in zebrafish larvae. In eye organogenesis, LiCl caused substantialdownregulation of six3a expression and a significant increase inthe incidence and severity of eye malformations in zebrafish larvae. Conclusions: LiCl exposure towards zebrafish during the embryonic period disrupted heart and eye organogenesis by changing the expression of transcription factors involved in the respective organogenesis processes.


Cite this article:
Koyuki Atifa Rahmi, Mohammad Saifur Rohman, Sharida Fakurazi, Husnul Khotimah, Hidayat Sujuti. Research Journal Pharmacy and Technology. 2024;17(12):5750-0. doi: 10.52711/0974-360X.2024.00875

Cite(Electronic):
Koyuki Atifa Rahmi, Mohammad Saifur Rohman, Sharida Fakurazi, Husnul Khotimah, Hidayat Sujuti. Research Journal Pharmacy and Technology. 2024;17(12):5750-0. doi: 10.52711/0974-360X.2024.00875   Available on: https://rjptonline.org/AbstractView.aspx?PID=2024-17-12-12


REFERENCES:
1.    Shalikram Chapekar N, Student R, Chapekar NS, et al. Bipolar Disorder and Role of Lithium in Its Management: An Overview. 2010.
2.    Shanthakumar J, Tamilselvan T, Arunagiri P, et al. Role of Caffeine Intake in Lithium Treated Methylphenidate Induced Oxidative Stress in an Animal Model of Mania. 2013.
3.    Medić B, Stojanović M, Stimec B V., et al. Lithium - Pharmacological and Toxicological Aspects: The Current State of the Art. Curr Med Chem 2018; 27(3): 337–351. doi: 10.2174/0929867325666180904124733.
4.    Ott M, Stegmayr B, Salander Renberg E, et al. Lithium intoxication: Incidence, clinical course and renal function – a population-based retrospective cohort study. Journal of Psychopharmacology 2016; 30(10): 1008–1019; doi: 10.1177/0269881116652577.
5.    Larsen ER, Damkier P, Pedersen LH, et al. Use of psychotropic drugs during pregnancy and breast‐feeding. Acta Psychiatr Scand 2015; 132(S445): 1–28; doi: 10.1111/acps.12479.
6.    Poels EMP, Bijma HH, Galbally M, et al. Lithium during Pregnancy and after Delivery: A Review. Int J Bipolar Disord 2018; 6(1); doi: 10.1186/s40345-018-0135-7.
7.    Nasir AS, Jaffat HS. Symbiotic effect of sodium selenite and vitamin e against lithium carbonate induced brain toxicity in male rats. Res J Pharm Technol. 2017; 10(6): 1661–1665; doi: 10.5958/0974-360X.2017.00293.1.
8.    Siebel AM, Vianna MR, Bonan CD. Pharmacological and Toxicological Effects of Lithium in Zebrafish. ACS Chem Neurosci. 2014; 5(6): 468–476; doi: 10.1021/cn500046h.
9.    Wu D, Pan W. GSK3: A Multifaceted Kinase in WntSignaling. Trends Biochem Sci 2010; 35(3): 161–168. doi: 10.1016/j.tibs.2009.10.002.
10.    Ueno S, Weidinger G, Osugi T, et al. Biphasic Role for Wnt/-Catenin Signaling in Cardiac Specification in Zebrafish and Embryonic Stem Cells. 2007.
11.    Cavodeassi F, Carreira-Barbosa F, Young RM, et al. Early stages of zebrafish eye formation require the coordinated activity of Wnt11, Fz5, and the Wnt/β-catenin pathway. Neuron. 2005; 47(1): 43–56; doi: 10.1016/j.neuron.2005.05.026.
12.    Nery LR, Eltz NS, Martins L, et al. Sustained behavioral effects of lithium exposure during early development in zebrafish: Involvement of the Wnt-β-catenin signaling pathway. Prog Neuropsychopharmacol Biol Psychiatry. 2014; 55: 101–108; doi: 10.1016/j.pnpbp.2014.04.011.
13.    Rani Bera S, Pattanayak S, Kanta Kanthal L, et al. Locomotor activity on zebra fish model using methanolic extract of Erigeron bonariensis L. Research Journal of Pharmacology and Pharmacodynamics. 2023; 45–48. doi: 10.52711/2321-5836.2023.00009.
14.    Mohandas R, Ramani P, Sherlin HJ, et al. Lithium carbonate as a bluing agent – a comparative study. Res J Pharm Technol. 2019; 12(10): 4895–4898; doi: 10.5958/0974-360X.2019.00847.3.
15.    Xu H, Li C, Zeng Q, et al. Genome‐wide identification of suitable zebrafish Danio rerio reference genes for normalization of gene expression data by RT‐qPCR. J Fish Biol. 2016; 88(6): 2095–2110. doi: 10.1111/jfb.12915.
16.    Becker JR, Robinson TY, Sachidanandan C, et al. In vivo natriuretic peptide reporter assay identifies chemical modifiers of hypertrophic cardiomyopathy signalling. Cardiovasc Res. 2012; 93(3): 463–470. doi: 10.1093/cvr/cvr350.
17.    Panzica‐Kelly JM, Zhang CX, Danberry TL, et al. Morphological score assignment guidelines for the dechorionated zebrafish teratogenicity assay. Birth Defects Res B Dev Reprod Toxicol. 2010; 89(5): 382–395. doi: 10.1002/bdrb.20260.
18.    Sabarinath C, Nandhu T, Sudhakar P, et al. Teratogenic effect of ethanolic extract of solanum xanthocarpum berries in zebrafish embryo. Res J Pharm Technol. 2020; 13(11): 5313–5316. doi: 10.5958/0974-360X.2020.00929.4.
19.    Eisen JS. History of Zebrafish Research. In: The Zebrafish in Biomedical Research Elsevier. 2020; 3–14. doi: 10.1016/B978-0-12-812431-4.00001-4.
20.    Sudha N, Vanisree AJ. Neuroprotective role of curcuma amada in f1 progeny of juvenile danio rerio (Zebrafish) from nickel chloride induced maternal stress in gestationally challenged adult fishes. Res J Pharm Technol. 2021; 14(8): 4215–4220; doi: 10.52711/0974-360X.2021.00731.
21.    Teame T, Zhang Z, Ran C, et al. The use of zebrafish (Danio rerio) as biomedical models. Animal Frontiers. 2019; 9(3): 68–77. doi: 10.1093/af/vfz020.
22.    Wilson SA, Nagaraj A, Vaidyanathan L. Calocybe indicia extract modifies gaba and serotonin levels to alleviate anxiety in experimental adult zebrafish models. Res J Pharm Technol. 2021; 14(9): 4789–4794. doi: 10.52711/0974-360X.2021.00833.
23.    Gauvrit S, Bossaer J, Lee J, et al. Modeling Human Cardiac Arrhythmias: Insights from Zebrafish. J Cardiovasc Dev Dis. 2022; 9(1). doi: 10.3390/jcdd9010013.
24.    Nanda A, Aparna S, Sahoo RN, et al. Effect of Amlodipine in Proliferative Retinopathy: Biochemical Estimation and Zebrafish (Danio rerio) Modeling. Res J Pharm Technol. 2022; 1114–1118. doi: 10.52711/0974-360X.2022.00186.
25.    Howe K, Clark MD, Torroja CF, et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature. 2013; 496(7446): 498–503. doi: 10.1038/nature12111.
26.    Kuppuswamy JM, Seetharaman B. Mancozeb exposure at sublethal concentration alters the transcription of the genes related to apoptosis in the adult zebrafish (Danio rerio) brain. Res J Pharm Technol. 2020; 13(10): 4801–4804. doi: 10.5958/0974-360X.2020.00844.6.
27.    Klug S, Collins M, Nagao T, et al. Effect of lithium on rat embryos in culture: Growth, development, compartmental distribution and lack of a protective effect of inositol. Arch Toxicol. 1992; 66(10): 719–728. doi: 10.1007/BF01972623.
28.    Tominaga N, Shino S, Uchida M, et al. Effects of Lithium on Developmental Toxicity, Teratogenicity and Transcriptome in Medaka Embryos.
29.    Mandal A, Holowiecki A, Song YC, et al. Wntsignaling balances specification of the cardiac and pharyngeal muscle fields. Mech Dev. 2017; 143: 32–41; doi: 10.1016/j.mod.2017.01.003.
30.    Kemmler CL, Riemslagh FW, Moran HR, et al. From Stripes to a Beating Heart: Early Cardiac Development in Zebrafish. J Cardiovasc Dev Dis. 2021; 8(2): 1–21. doi: 10.3390/JCDD8020017.
31.    Guner-Ataman B, Paffett-Lugassy N, Adams MS, et al. Zebrafish second heart field development relies on progenitor specification in anterior lateral plate mesoderm and nkx2.5 function. Development. 2013; 140(6): 1353–1363. doi: 10.1242/dev.088351.
32.    Sergeeva IA, Christoffels VM. Regulation of Expression of Atrial and Brain Natriuretic Peptide, Biomarkers for Heart Development and Disease. Biochim Biophys Acta Mol Basis Dis. 2013; 1832(12). doi: 10.1016/j.bbadis.2013.07.003.
33.    Fuhrmann S. WntSignaling in Eye Organogenesis. Organogenesis. 2008; 4(2): 60–67. doi: 10.4161/org.4.2.5850.
34.    Samuel A, Rubinstein AM, Azar TT, et al. Six3 regulates optic nerve development via multiple mechanisms. Sci Rep. 2016; 6. doi: 10.1038/srep20267.
35.    Tippabathani J, Nellore J, Suresh X. Computational identification of microRNAs binding to the transcription factors related to dopamine neurons. Res J Pharm Technol. 2018; 11(12): 5520–5528. doi: 10.5958/0974-360X.2018.01005.3.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available