Author(s):
Prananda Surya Airlangga, Rahmat Sayyid Zharfan, Nancy Margarita Rehatta, Soetjipto, Eddy Rahardjo, Widjiati
Email(s):
nancy-m-r@fk.unair.ac.id
DOI:
10.52711/0974-360X.2024.00858
Address:
Prananda Surya Airlangga1, Rahmat Sayyid Zharfan1, Nancy Margarita Rehatta1*, Soetjipto2, Eddy Rahardjo1, Widjiati3
1Department of Anesthesiology and Reanimation, Faculty of Medicine Universitas Airlangga – Dr. Soetomo General Hospital, Surabaya, Indonesia, 60132.
2Department of Physiology and Medical Biochemistry, Faculty of Medicine Universitas Airlangga, Surabaya, Indonesia, 60132.
3Department of Veterinary Science, Faculty of Veterinary Medicine Universitas Airlangga, Surabaya, Indonesia. 60115.
*Corresponding Author
Published In:
Volume - 17,
Issue - 11,
Year - 2024
ABSTRACT:
Background: Post-cardiac arrest resuscitation commonly leaving neurological defects. Hypothermia is known to affect several physiological aspects of the brain. HBN-1 was developed as an alternative in regulated hypothermia. Aim: To analyze the impact of HBN-1 as regulated hypothermia compared to forced hypothermia on neurobehavior after cardiac arrest in animal models. Material and Methods: A true experimental study, with a controlled group post-test design. On male Wistar-strain rats,after anesthesized, cardiac arrest was carried out using electric current. After ROSC, the rats were randomly divided into normothermia, force hypothermia (ice pack), and regulated hypothermia (HBN-1) group. Therapeutic hypothermia was carried out for 3 hours. The treatment group was returned to the cage and received standard rat food and drink.Neurobehavior was measured by the Rat ND Score on day-7. Results: The force hypothermia achieved hypothermia was significantly faster than HBN-1 (p=0.01).The hypothermic group showed significantly lower Rat-ND Score than normothermia (p=0.012). The HBN-1 group show lower Rat-ND Score than forced hypothermia, but not statistically significant (p=0.083). There was significant linear correlation between Rat-ND Score and the neuronal cell apoptosis in claustrum (p=0.000), with correlation coefficient of 0.843. The linear graphic analysis showed R2=0.6575. Conclusion: Hypothermia using HBN-1 show significant decrease in Rat-ND Score. Further research in experimental animals with a larger number of samples and replication needs to be done. The variable that also needs to consider is the safety of using this pharmacological agent
Cite this article:
Prananda Surya Airlangga, Rahmat Sayyid Zharfan, Nancy Margarita Rehatta, Soetjipto, Eddy Rahardjo, Widjiati. Effectiveness of Therapeutic Hypothermia Using HBN-1 Compared to Forced Hypotermia in Neurobehaviour Improvement after Cardiac Arrest: An Experimental Animal Model Study. Research Journal of Pharmacy and Technology. 2024; 17(11):5632-1. doi: 10.52711/0974-360X.2024.00858
Cite(Electronic):
Prananda Surya Airlangga, Rahmat Sayyid Zharfan, Nancy Margarita Rehatta, Soetjipto, Eddy Rahardjo, Widjiati. Effectiveness of Therapeutic Hypothermia Using HBN-1 Compared to Forced Hypotermia in Neurobehaviour Improvement after Cardiac Arrest: An Experimental Animal Model Study. Research Journal of Pharmacy and Technology. 2024; 17(11):5632-1. doi: 10.52711/0974-360X.2024.00858 Available on: https://rjptonline.org/AbstractView.aspx?PID=2024-17-11-66
REFERENCES:
1. M. Holzer, S. A. Bernard, S. Hachimi-Idrissi, R. O. Roine, F. Sterz, and M. Müllner. Hypothermia for neuroprotection after cardiac arrest: Systematic review and individual patient data meta-analysis. Crit. Care Med. 2005; 33(2): 414–418. doi: 10.1097/01.ccm.0000153410.87750.53
2. M. G. Silverman and B. M. Scirica. Cardiac arrest and therapeutic hypothermia. Trends Cardiovasc. Med. 2016; 26 (4): 337–344. doi: 10.1016/j.tcm.2015.11.002
3. M. S. Damian et al., Coenzyme Q10 Combined With Mild Hypothermia After Cardiac Arrest,Circulation. 2004; 110(19): 3011–3016. doi: 10.1161/01.cir.0000146898.22624.32
4. L. Duprez, E. Wirawan, T. Vanden Berghe, and P. Vandenabeele. Major cell death pathways at a glance. Microbes Infect. 2009; 11(13): 1050–1062. doi: 10.1016/j.micinf.2009.08.013
5. R. M. Merchant et al. Therapeutic hypothermia after cardiac arrest: Unintentional overcooling is common using ice packs and conventional cooling blankets.Crit. Care Med. 2004; 34: S490–S494. doi: 10.1097/01.ccm.0000245918.23340.5f
6. M. A. Peberdy et al. Part 9: Post-Cardiac Arrest Care: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation. 2020; 122(18): S768–S786. doi: 10.1161/circulationaha.110.971002
7. C. W. Callaway et al.Part 8: Post-cardiac arrest care: 2015 American Heart Association guidelines update for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2015; 132(18): S465–S482. doi: 10.1161/cir.0000000000000262
8. K. H. Polderman and J. Callaghan. Equipment review: Cooling catheters to induce therapeutic hypothermia?. Crit. Care. 2004; 10(6): 234. doi: 10.1186/cc5086
9. S. A. Bernard and M. Buist. Induced hypothermia in critical care medicine: A review. Crit. Care Med. 2003; 31(7): 2041–2051. doi: 10.1097/01.ccm.0000069731.18448.84
10. F. Kim et al. Pilot Study of Rapid Infusion of 2 L of 4°C Normal Saline for Induction of Mild Hypothermia in Hospitalized, Comatose Survivors of Out-of-Hospital Cardiac Arrest. Circulation. 2005; 112(5): 715–719. doi: 10.1161/circulationaha.105.541228
11. M. Oddo, M.-D. Schaller, F. Feihl, V. Ribordy, and L. Liaudet, From evidence to clinical practice: Effective implementation of therapeutic hypothermia to improve patient outcome after cardiac arrest. Crit. Care Med. 2006; 34(7): 1865–1873. doi: 10.1097/01.ccm.0000218411.02952.86
12. L. M. Katz et al. Effect of a Pharmacologically Induced Decrease in Core Temperature in Rats Resuscitated from Cardiac Arrest. Resuscitation. 2015; 92: 26–31. doi: 10.1016/j.resuscitation.2015.04.008
13. L. M. Katz, G. McGwin, and C. J. Gordon. Drug-Induced Therapeutic Hypothermia After Asphyxial Cardiac Arrest in Swine. Ther. Hypothermia Temp. Manag. 2012; 2(4): 176–182. doi: 10.1089/ther.2012.0012
14. L. Katz, U. Ebmeyer, P. Safar, A. Radovsky, and R. Neumar. Outcome model of asphyxial cardiac arrest in rats. J. Cereb. Blood Flow Metab. 1995; 15(6): 1032–1039. doi: 10.1038/jcbfm.1995.130
15. C. Sandroni, F. Cavallaro, and M. Antonelli. Therapeutic hypothermia: Is it effective for non-VF/VT cardiac arrest?. Crit. Care. 2013; 17(2). doi: 10.1186/cc12592
16. J. Y. Lefrant et al. Temperature measurement in intensive care patients: Comparison of urinary bladder, oesophageal, rectal, axillary, and inguinal methods versus pulmonary artery core method. Intensive Care Med. 2003; 29(3): 414–418. doi: 10.1007/s00134-002-1589-3
17. R. S. Pozos and D. F. Danzl. Human Physiological Responses To Cold Stress and Hypothermia1. Med. Asp. Harsh Environ. 2002; 1: 353–382. doi: 10.1201/b11623-18
18. T. Drabek and P. Kochanek. Is hypothermia useful in managing critically Ill patients? Which ones? Under what conditions?, in Evidence Based Practice of Critical Care, 1st ed., C. S. Deutschman and P. J. Neligan, Eds. USA: Saunders. An Imprint of Elveiser. 2010; 437–44. doi: 10.1016/b978-1-4160-5473-3.00035-x
19. L. M. Katz, J. E. Frank, G. McGwin, A. Finch, and C. J. Gordon. Induction of a Prolonged Hypothermic State by Drug-induced Reduction in the Thermoregulatory Set-Point. Ther. Hypothermia Temp. Manag. 2012; 2(2): 61–66. doi: 10.1089/ther.2011.0012
20. C. Constantinides, R. Mean, and B. J. Janssen. Effects of isoflurane anesthesia on the cardiovascular function of the C57BL/6 mouse. ILAR J. 2011; 52(3): e21–e31. doi: 10.1093/ilar.52.3.249
21. C. F. T. Carreño, V. M. M. Ferreira, and G. S. Morato. Ethanol-induced hypothermia in rats is antagonized by dexamethasone.Brazilian J. Med. Biol. Res. 1997; 30(1): 69–72. doi: 10.1590/s0100-879x1997000100014
22. M. Faulds and T. Meekings. Temperature management in critically ill patients.Contin. Educ. Anaesthesia. Crit. Care Pain. 2013; 13(3): 75–79.doi: 10.1093/bjaceaccp/mkt014
23. X. Y. Gao et al., Prolonged hypothermia exposure diminishes neuroprotection for severe ischemic-hypoxic primary neurons. Cryobiology. 2016; 72(2): 141–147. doi: 10.1016/j.cryobiol.2015.12.005
24. D. Che, L. Li, C. M. Kopil, Z. Liu, W. Guo, and R. W. Neumar. Impact of therapeutic hypothermia onset and duration on survival, neurologic function, and neurodegeneration after cardiac arrest. Crit. Care Med. 2011; 39(6): 1423–1430. doi: 10.1097/ccm.0b013e31820eba09
25. F. U. Ahmad, M. Y. Wang, and A. D. Levi. Hypothermia for Acute Spinal Cord Injury - A Review. World Neurosurg. 2014; 82(1–2). 207–214.doi: 10.1016/j.wneu.2014.04.010
26. K. Kurisu, J. Y. Kim, J. You, and M. A. Yenari. Therapeutic Hypothermia and Neuroprotection in Acute Neurological Disease. Curr Med Chem. 2019; 26(29): 5430–5455. doi: 10.2174/0929867326666190909113330
27. U. B. Schambra, J. Goldsmith, K. Nunley, Y. Liu, S. Harirforoosh, and H. M. Schambra. Low and moderate prenatal ethanol exposures of mice during gastrulation or neurulation delays neurobehavioral development. Neurotoxicol. Teratol. 2015; 51: 1–11. doi: 10.1016/j.ntt.2015.09.005
28. F. Wang et al. Neuroprotective effect of acute ethanol administration in a rat with transient cerebral ischemia. Stroke. 2012; 43(1). 205–210.doi: 10.1161/strokeaha.111.623128
29. J. Chen and G. Aguilera. Vasopressin protects hippocampal neurones in culture against nutrient deprivation or glutamate-induced apoptosis. J Neuroendocr. 2010; 22(10): 1072–1081. doi: 10.1111/j.1365-2826.2010.02060.x
30. T. Leng, X. Gao, J. P. Dilger, and J. Lin. Neuroprotective effect of lidocaine: is there clinical potential?. Int. J. Physiol. Pathophysiol. Pharmacol. 2016; 8(1): 9–13.doi: 10.1152/ajpcell.00407.2015
31. K. Chen, P. Wei, Q. Zheng, J. Zhou, and J. Li. Neuroprotective effects of intravenous lidocaine on early postoperative cognitive dysfunction in elderly patients following spine surgery.Med. Sci. Monit. 2015; 21: 1402–1407. doi: 10.12659/msm.893327
32. W. Huang, F. Meng, J. Cao, X. Liu, J. Zhang, and M. Li. Neuroprotective Role of Exogenous Brain-Derived Neurotrophic Factor in Hypoxia–Hypoglycemia-Induced Hippocampal Neuron Injury via Regulating Trkb/MiR134 Signaling. J. Mol. Neurosci. 2017; 62(1): 35–42. doi: 10.1007/s12031-017-0944-3
33. M. Alturkustani and L.-C. Ang. Claustral neurons are vulnerable to ischemic insults in cardiac arrest encephalopathy. Int. J. Clin. Exp. Pathol. 2018; 11(5): 2735–2741. doi: 10.1016/j.ntt.2015.09.005
34. K. M. Stiefel, A. Merrifield, and A. O. Holcombe. The claustrum’s proposed role in consciousness is supported by the effect and target localization of Salvia divinorum. Front. Integr. Neurosci. 2014; 8(FEB): 1–7. doi: 10.3389/fnint.2014.00020
35. K. S. Anand and V. Dhika. Hippocampus in health and disease: An overview. Ann. Indian Acad. Neurol. 2012; 15(4): 239–246. doi: 10.4103/0972-2327.104323
36. K. C. Kemp, A. J. Cook, J. Redondo, K. M. Kurian, N. J. Scolding, and A. Wilkins, Purkinje cell injury, structural plasticity and fusion in patients with Friedreich’s ataxia. Acta Neuropathol. Commun. 2016; 4(1): 53. doi: 10.1186/s40478-016-0374-7
37. M. G. Paine, D. Che, L. Li, and R. W. Neumar. Cerebellar Purkinje cell neurodegeneration after cardiac arrest: Effect of therapeutic hypothermia. Resuscitation. 2012; 83(12): 1511–1516. doi: 10.1016/j.resuscitation.2012.05.002
38. N. Greenberg, Adaptive Functions of the Corpus Striatum: The Past and Future of the R-Complex, Neuroethol. Paul MacLean Front. Converg; 2002; 45–81. doi: 10.1016/S0960-9822(02)00739-0
39. M. Fujioka, K. Okuchi, T. Sakaki, K. I. Hiramatsu, S. Miyamoto, and S. Iwasaki. Specific changes in human brain following reperfusion after cardiac arrest. Stroke. 1994; 25(10): 2091–2095. doi: 10.1161/01.STR.25.10.2091
40. M. S. Jang et al., Moderate brain hypothermia started before resuscitation improves survival and neurobehavioral outcomes after CA/CPR in mice. Am. J. Emerg. Med. 2019; 37(10): 1942–1948. doi: 10.1016/j.ajem.2019.157512
41. K. P. Wilder-Schaaf et al. Anxiety, depression, and PTSD following cardiac arrest: A systematic review of the literature. Resuscitation. 2013; 84(7): 873–877. doi: 10.1016/j.resuscitation.2013.02.025
42. P. P. Drury, L. Bennet, and A. J. Gunn. Mechanisms of hypothermic neuroprotection, Semin. Fetal Neonatal Med. 2010; 15(5): 287–292. doi: 10.1016/j.siny.2010.06.004
43. B. Pavel et al., Electrical Stimulation in the Claustrum Area Induces a Deepening of Isoflurane Anesthesia in Rat. Brain Sci. 2019; 9(11). doi: 10.3390/brainsci9110311
44. D. Yu et al. Mild hypothermia modulates the expression of nestin and caspase-3 in the sub-granular zone and improves neurological outcomes in rats with ischemic stroke. Oncotarget. 2017; 8(65): 109191–109200. doi: 10.18632/oncotarget.22967
45. F. B. Teixeira et al. Chronic Ethanol Exposure during Adolescence in Rats Induces Motor Impairments and Cerebral Cortex Damage Associated with Oxidative Stress. PLoS One. 2014; 9(6): e101074. doi: 10.1371/journal.pone.0101074
46. H. Bruguier et al. In search of common developmental and evolutionary origin of the claustrum and subplate. J. Comp. Neurol. 2020; 528(17): 2956–2977. doi: 10.1002/cne.25003
47. Q. Wang et al. Organization of the connections between claustrum and cortex in the mouse. J. Comp. Neurol. 2017: 13-17. doi: 10.1002/cne.24139
48. B. N. Mathur. The claustrum in review. Front. Syst. Neurosci. 2014; 8(1): 1-11. doi: 10.3389/fnsys.2014.00048