Author(s):
Baburao N. Chandakavathe, Ravindra Kulkarni
Email(s):
babu41126@gmail.com
DOI:
10.52711/0974-360X.2024.00848
Address:
Baburao N. Chandakavathe1,2*, Ravindra Kulkarni3
1Department of Pharmaceutics, Shri Vithal Education and Research Institutes, College of Pharmacy, Pandharpur - 413304, Maharastra, India.
2Department of Pharmaceutics, D.S.T.S. Mandal’s College of Pharmacy, Solapur - 413004, Maharastra, India.
3Department of Pharmaceutical Chemistry, BVDU’s Poona College of Pharmacy, Erandawane, Paudh Road, Pune. 411038. MS. India.
*Corresponding Author
Published In:
Volume - 17,
Issue - 11,
Year - 2024
ABSTRACT:
Aim of the present investigation was to develop a novel, non-toxic and biodegradable copolymer of acrylamide-graft-mesquite gum polymer (Aam-g-MGP) by graft copolymerisation technique using cerric ammonium nitrate as free radical initiator under microwave conditions. The mesquite raw gum was purified and and grafted with acrylamide using ceric ammonium nitrate as a free radical initiator. The variation in reaction parameters affected the percent grafting (%G) and grafting efficiency (%GE) of the copolymer samples. The grafting was confirmed by FT-IR and elemental analysis, FT-IR spectral studies and elemental analysis data supported the grafting process. Subsequently synthesised graft copolymer was subjected for viscosity, water retention, swelling index and hydration capacity evaluation. Modified polymer was also tested for biodegradability on E. coli, and toxicity in Drosophila melanogaster. The developed copolymer demonstrated considerably increase in viscosity, water retention capacity, swelling index, and hydration capacity as compared to ungrafted mesquite gum polymer. The grafted copolymer Aam-g-MGP was proved biodegradable and non-toxic in nature. Based on the results swelling index and water retention capacity developed copolymer can be used in the development of extended release pharmaceutical formulations.
Cite this article:
Baburao N. Chandakavathe, Ravindra Kulkarni. Synthesis and Assessment of Acrylamide-graft-mesquite gum polymer (Aam-g-MG) for its Biodegradability in E. coli and Toxicity in Drosophila melanogaster. Research Journal of Pharmacy and Technology. 2024; 17(11):5555-0. doi: 10.52711/0974-360X.2024.00848
Cite(Electronic):
Baburao N. Chandakavathe, Ravindra Kulkarni. Synthesis and Assessment of Acrylamide-graft-mesquite gum polymer (Aam-g-MG) for its Biodegradability in E. coli and Toxicity in Drosophila melanogaster. Research Journal of Pharmacy and Technology. 2024; 17(11):5555-0. doi: 10.52711/0974-360X.2024.00848 Available on: https://rjptonline.org/AbstractView.aspx?PID=2024-17-11-56
REFERENCES:
1. Dahman Y, Puskas JE, Margaritis A, Merali Z, Cunningham M. Novel thymine-functionalized polystyrenes for applications in biotechnology. polymer synthesis and characterization. Macromolecules. 2003; Mar 15; 36(7): 2198–205. doi:10.1021/ma021608q
2. Singh RP, Karmakar GP, Rath SK, Karmakar NC, Pandey SR, Tripathy T, et al. Biodegradable drag reducing agents and flocculants based on polysaccharides: Materials and applications. Polymer Engineering Science. 2000; Jan; 40(1): 46–60. doi:10.1002/pen.11138
3. Mukhopadhyay P., Sarkar, K. Bhattacharya, S. Bhattacharyya, A. R. Mishra, P.P. Kundu, pH sensitive N-succinyl chitosan grafted polyacrylamide hydrogel for oral insulin delivery. Carbohydr. Polym. 112 (2014) 627–637. DOI: 10.1016/j.carbpol.2014.06.045.
4. Chandakavathe BN, Kulkarni RG, Dhadde SB. Grafting of natural polymers and gums for Drug Delivery Applications: A perspective review. Critical Reviews TM in Therapeutic Drug Carrier Systems. 2022; 39(6): 45–83.
5. Singh V, Tiwari A, Tripathi DN, Sanghi R. Poly(acrylonitrile) graftedipomoeaseed-gums: a renewable reservoir to industrial gums. Biomacromolecules. 2004; Nov 12; 6(1): 453–6. doi:10.1021/bm049518b
6. Mudgil D, Barak S. Mesquite gum (Prosopis gum): Structure, Properties & Applications - A Review. International Journal of Biological Macromolecules. 2020; Sept; 159: 1094–102. doi:10.1016/j.ijbiomac.2020.05.153
7. Bhagwat DA, Kolekar VR, Nadaf SJ, Choudhari PB, More HN, Killedar SG. Acrylamide grafted neem (azadirachta indica) gum polymer: Screening and exploration as a drug release retardant for tablet formulation. Carbohydrate Polymers. 2020; Feb; 229: 115357. doi:10.1016/j.carbpol.2019.115357
8. Malviya R, Sharma PK, Dubey SK. Stability facilitation of nanoparticles prepared by ultrasound assisted solvent-antisolvent method: Effect of neem gum, acrylamide grafted neem gum and carboxymethylated neem gum over size, morphology and drug release. Mater. Sci. Eng. C. 91 (2018) 772–784.
9. Patel M, Tekade A, Gattani S, Surana S. Solubility enhancement of lovastatin by modified locust bean gum using solid dispersion techniques. AAPS PharmSciTech. 2008; Dec; 9(4): 1262–9.
10. Sarkar D, Nandi G, Changder A, Hudati P, Sarkar S, Ghosh LK. Sustained release gastroretentive tablet of metformin hydrochloride based on poly (acrylic acid)-grafted-Gellan. International Journal of Biological Macromolecules. 2017; Mar; 96: 137–48.
11. Vijan V, Kaity S, Biswas S, Isaac J, Ghosh A. Microwave assisted synthesis and characterization of acrylamide grafted Gellan, application in drug delivery. Carbohydrate Polymers. 2012; Sept; 90(1): 496–506. doi:10.1016/j.carbpol.2012.05.071
12. https://bangalorefly.ncbs.res.in/drosophila-media-preparation, last accessed on 2nd January 2024
13. Sun Y, Yolitz J, Wang C, Spangler E, Zhan M, Zou S. Aging studies in drosophila melanogaster. Methods in Molecular Biology. 2013; 77–93. doi:10.1007/978-1-62703-556-9_7
14. Vela D, Rondal J, Cárdenas S, Gutiérrez-Coronado J, Jara E, Debut A, et al. Assessment of the toxic effects of chitosan-coated magnetite nanoparticles on drosophila melanogaster. American Journal of Applied Sciences. 2020; Jan 1; 17(1): 204–13. doi:10.3844/ajassp.2020.204.213
15. Bhattacharya A, Misra N. Grafting: A versatile means to modify polymerstechniques, factors and applications. Progress in Polymer Science. 2004; Aug; 29(8): 767–814.
16. Bhosale RR, Osmani RA, Abu Lila AS, Khafagy E-S, Arab HH, Gowda DV, et al. Ghatti gum-base graft copolymer: A plausible platform for ph-controlled delivery of antidiabetic drugs. RSC Advances. 2021; 11(24): 14871–82. doi:10.1039/d1ra01536b
17. Malviya R, Sharma PK, Dubey SK. Microwave-assisted preparation of biodegradable, hemocompatible, and antimicrobial neem gum–grafted poly (acrylamide) hydrogel using (3)2 factorial design. Emergent Materials. 2019; Feb 14; 2(1): 95–112. doi:10.1007/s42247-019-00022-y
18. Sienkiewicz A, Krasucka P, Charmas B, Stefaniak W, Goworek J. Swelling effects in cross-linked polymers by thermogravimetry. Journal of Thermal Analysis and Calorimetry. 2017; Feb 22; 130(1): 85–93. doi:10.1007/s10973-017-6131-9
19. Chang L, Xu L, Liu Y, Qiu D. Superabsorbent polymers used for agricultural water retention. Polymer Testing. 2021; Feb; 94: 107021. doi:10.1016/j.polymertesting.2020.107021
20. Verma S, Tonk RK, Albratty M, Alhazmi HA, Najmi A, Kumar R, et al. Design and evaluation of sustained release mucoadhesive film of sumatriptan succinate containing grafted co-polymer as the platform. Saudi Pharmaceutical Journal. 2022 Nov;30(11):1527–37.
21. S. Garg, T. Bal, S.G. Panpalia, A. D. Rajora, B. D. Ghosh, Preparation and characterization of microwave irradiated pH-sensitive polyacrylamide grafted flax seed mucilage graft copolymeric hydrogel (PFLSM-g-PAM-cl-MBA) and its evaluation as effective polymeric scaffold. Sustainable chemistry and pharmacy. 22 (2021) 100479. DOI: 10.1016/j.scp.2021.100479
22. Miller-Chou BA, Koenig JL. A review of polymer dissolution. Progress in Polymer Science. 2003; Aug; 28(8): 1223–70. doi:10.1016/s0079-6700(03)00045-5
23. Goudanavar P, Hiremath D, Spandana D, Reddy SR. Development and Evaluation of Fast Disintegrating Tablets of Granisetron HCl with Natural and Synthetic Polymers. Asian Journal of Pharmaceutical Research. 2011; 1(3): 72-77.
24. Patel N, Patel J, Modasiya M. Formulation and In Vitro Evaluation of Glipizide as Floating Drug Delivery System. Asian Journal of Pharmacy and Technology. 2012; 2(2): 67-73.
25. Baghel SS, Dangi S, Soni P, Singh P, Shivhare Y. Acute Toxicity Study of Aqueous Extract of Coccinia indica (Roots). Asian Journal of Research in Pharmaceutical Sciences. 2011; 1(1): 23-25.
26. Poddar RK, Rakha P, Singh SK, Mishra DN. Bioadhesive Polymers as a Platform for Drug Delivery: Possibilities and Future Trends. Research Journal of Pharmaceutical Dosage Forms and Technology. 2010; 2(1): 1-6 .
27. Bangar B, Shinde N, Deshmukh S, Kale B. Natural Polymers in Drug Delivery Development. Research Journal of Pharmaceutical Dosage Forms and Technology. 2014; 6(1): 54-57.
28. Panchawat S, Sisodia SS. Comparative Evaluation/Optimization of Soxhlet, Ultrasonic and Microwave Assisted Extraction of Ficus religiosa Linn. Research Journal of Pharmacognosy and Phytochemistry 2010; 2(4): 309-312.
29. Hemant R. Badwaik, Deepa Thakur, Kalyani Sakure, Tapan Kumar Giri, Kartik T. Nakhate, Dulal Krishna Tripathi. Microwave Assisted Synthesis of Polyacrylamide Grafted Guar Gum and its Application as Flocculent for Waste Water Treatment. Research Journal of Pharmacy and Technology. 2014; 7(4): 401-407.
30. Joshi U, Mane V, Joshi SV. Comparative Study Of Conventional and Microwave Assisted Extraction of Some Indigenous Drugs. Research Journal of Pharmacy and Technology. 2009; 2(2): 417-418.
31. Khaudeyer HS, Kadhim ZN, Hanoosh WS. Thermal Stability of Some New Metal Containing Polymers Based on Resol-Bisphenol A Formaldehyde Resin. Research Journal of Science and Technology. 2015; 7(3): 183-190.
32. Jangdey MS, Gupta A, Sah AK. Formulation and Evaluation of Sustained Release Topical Gel of Flurbiprofen Using Natural Polymers. Research Journal of Topical and Cosmetic Sciences. 2014; 5(1): 7-11.