Author(s):
Sharda Sambhakar, Shwetha S. Kamath K, Thimmasetty J., Shashank Nayak N., Srinivas Hebbar, Shah Jayesh Pravin, Bishambar Singh
Email(s):
shwetha26pharma@gmail.com
DOI:
10.52711/0974-360X.2024.00847
Address:
Sharda Sambhakar1, Shwetha S. Kamath K2*, Thimmasetty J.3, Shashank Nayak N.4, Srinivas Hebbar5, Shah Jayesh Pravin6, Bishambar Singh7
1Assistant Professor, Department of Pharmacy, Banasthali Vidyapith, Rajasthan-304022, India.
2Ph.D. Research Scholar, Department of Pharmacy, Banasthali Vidyapith, Rajasthan-304022, India.
3Professor and HOD, Department of Pharmaceutics, Bapuji Pharmacy College, Davanagere Karnataka-577004, India.
4Associate Professor, Department of Pharmaceutics, Bapuji Pharmacy College, Davanagere Karnataka - 577004, India.
5Assistant Professor, Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India.
6Research Scholar, Department of Pharmaceutics, Bapuji Pharmacy College, Davanagere Karnataka-577004, India.
7PHTI Department, SMS Medical College & Hospital, Jaipur, Rajasthan-302004, India.
*Corresponding Author
Published In:
Volume - 17,
Issue - 11,
Year - 2024
ABSTRACT:
Solutions of drugs may behave as ideal solutions, real solutions, or irregular solutions. It is necessary to understand the behaviour of these solutions before attempting to handle them. Various theories/models are reported in the literature to explain their behaviour. The importance of models in predicting the solubility of aripiprazole is demonstrated using its solubility in dioxane-water blends. The method utilizes theoretical and semiempirical approaches to predict solubility. The experimental solubility data for aripiprazole are validated using both ideal and nonideal solutions, focusing on the Scatchard-Hildebrand equation for regular solutions. Furthermore, the Extended Hildebrand Solubility approach is employed to identify the most suitable equation that yields calculated solubility data in agreement with experimental results. Interestingly, a method that directly correlates the solubility parameter of solvent combinations with the logarithm of the mole fraction solubility produces findings comparable to those obtained with the Extended Hildebrand Solubility approach. The results imply that aripiprazole solutions behave as irregular solutions. The solubility profile of aripiprazole may be precisely determined using a quartic equation developed based on regression of activity coefficient versus solubility parameter of the solvent blends. This method saves time and money compared to experimental methods.
Cite this article:
Sharda Sambhakar, Shwetha S. Kamath K, Thimmasetty J., Shashank Nayak N., Srinivas Hebbar, Shah Jayesh Pravin, Bishambar Singh. Harnessing Solubility Parameter-based Approaches to Predict Aripiprazole’s Solubility in Solvent Mixtures. Research Journal of Pharmacy and Technology. 2024; 17(11):5547-4. doi: 10.52711/0974-360X.2024.00847
Cite(Electronic):
Sharda Sambhakar, Shwetha S. Kamath K, Thimmasetty J., Shashank Nayak N., Srinivas Hebbar, Shah Jayesh Pravin, Bishambar Singh. Harnessing Solubility Parameter-based Approaches to Predict Aripiprazole’s Solubility in Solvent Mixtures. Research Journal of Pharmacy and Technology. 2024; 17(11):5547-4. doi: 10.52711/0974-360X.2024.00847 Available on: https://rjptonline.org/AbstractView.aspx?PID=2024-17-11-55
REFERENCES:
1. Nozomu S. Regular solution theory for nonlinear composition dependency of enantioselectivity by mixed micelle. J. Mol. Liq. 2022; 367: 120597. https://doi.org/10.1016/j.molliq.2022.120597
2. Yanmin S. Yu B. Peixia Z. Xiaolong Y. Zheng Z. Dan D. Han W. Wenju L. Equilibrium solubility of 6-propyl-2-thiouracil in nine pure solvents: Determination, correlation, Hansen solubility parameter and thermodynamic properties. J. Indian. Chem. Soc. 2023; 100: 100934
3. Hildebrand JH. Scott RL. Regular solutions. Inorg. Chem. 1963; 2: 431–432. https://doi.org/10.1021/ic50006a060
4. María MM. Darío A. Tinjacá. Jouyban A. Martínez F. William E., et al. Volumetric properties of {PEG 200 (or 300) (1) + water (2)} mixtures at several temperatures and correlation with the Jouyban–Acree model. Phys. Chem. Liq. 2017: 100- 109. https://doi.org/10.1080/00319104.2017.1303700
5. Kolar P. Shen JW. Tsuboi. Akio T. Takeshi I. Solvent selection for pharmaceuticals. Fluid. Ph. Equilibria. 2002; 194: 771-782. http://dx.doi.org/10.1016/S03783812(01)00716-6
6. Li A. Yalkowsky SH. Solubility of organic solutes in ethanol/water mixtures. J. Pharm. Sci. 1994;83: 1735-1740.
7. Smith PE. Mazo RM. On the theory of solute solubility in mixed solvents. J. Phys. Chem. B. 2008; 112: 7875-7884. https://doi.org/10.1021/jp712179w
8. Stephen WT. Ideal solution laws: Apparatus and experiment. J. Chemi. Edu. 1962; 39: 258 https://doi.org/10.1021/ed039p258
9. Estanislao S. Arturo A. Tuñón I. Fundamental Principles Governing Solvents Use. Hand book of solvents. 2nd Ed, 2014. Chap (2) PP.11-72. https://doi.org/10.1016/B978-1-895198-64-5.50004-0
10. Bustamante P. Escalera B. Enthalpy and entropy contributions to the solubility of sulphamethoxypyridazine in solvent mixtures showing two solubility maxima. J. Pharm. Pharmacol. 1995; 47: 550-555. https://doi.org/10.1111/j.2042-7158.1995.tb06712.x.
11. Rathi PB. Determination and evaluation of solubility parameter of satranidazole using dioxane-water system. Ind. J. Pharm. Sci. 2010; 72: 671-674. https://doi.org/10.4103/0250474x.78546
12. Martin AN. Swarbrick J. Cammarata. Physical Pharmacy 3rd Ed, Philadelphia, Lee and Febiger. 1983:371-374.
13. Hildebrand JH. An improvement in the theory of regular solutions. Proc. Natl. Acad. Sci. 1979;76: 6040-6041.
https://doi.org/10.1073/pnas.76.12.6040
14. James KC. Ng CT. Noyce PR. Solubilities of testosterone propionate and related esters in organic solvents. J. Pharm. Sci. 1976; 65: 656-659. https://doi.org/10.1002/jps.2600650506
15. Adjei A. Newburger J. Martin A. Extended Hildebrand approach: solubility of caffeine in dioxane-water mixtures. J. Pharm. Sci. 1980; 69: 659-661. https://doi.org/10.1002/jps.2600690613
16. Martin A. Wu PL. Adjei A. Mehdizadeh M. James KC. Metzler C. Extended Hildebrand solubility ap roach: testosterone and testosterone propionate in the binary solvents. J. Pharm. Sci. 1982; 71: 1334-1340. https://doi.org/10.1002/jps.2600711207
17. Martin A. Newburger J. Adjei A. Extended Hildebrand solubility approach: Solubility of theophylline in polar binary solvents. J. Pharm. Sci. 1980; 69: 487-491. https://doi.org/10.1002/jps.2600690503
18. Wu PL. Martin A. Extended Hildebrand solubility approach: p-hydroxy benzoic acid in mixtures of dioxane and water. J. Pharm. Sci. 1983; 72: 587-592. https://doi.org/10.1002/jps.2600720603
19. Subrahmanyam CVS. Sreenivasareddy M. Venkatarao J. Gundurao P. Irregular solution behaviour of paracetamol in binary mixtures. Int. J. Pharm. 78 1992 17-24. https://doi.org/10.1016/0378-5173(92)90350-B
20. Peggy C. David T. John M. Benjamin PP. David LK. Rufina GA. et al. Heat of fusion of polymer crystals by fast scanning calorimetry. Polymer. 2017; 126: 240-247. https://doi.org/10.1016/j.polymer.2017.08.042
21. Franz JL. Nicolai W. Joachim K. Dirk WS. On the Determination of the Enthalpy of Fusion of α-Crystalline Isotactic Polypropylene Using Differential Scanning Calorimetry, X-Ray Diffraction, and Fourier-Transform Infrared Spectroscopy: An Old Story Revisited. Adv. Eng. Mater. 2019; 22: 1900796. DOI: 10.1002/adem.201900796
22. Oseph WH. Emily AL. Michael LC. Andrew DF. Nicole LQ. Deborah MR. et al. Melting Point, Enthalpy of Fusion, and Heat Capacity Measurements of Several Polyfunctional, Industrially Important Compounds by Differential Scanning Calorimetry. Chem. Eng. Data. 2018; 63: 2500–2511. https://doi.org/10.1021/acs.jced.7b01026
23. Barton AFM. Handbook of Solubility Parameters and other cohesion parameters, 2nd Ed, CRC press, Florida (1991) PP.167-168.
24. Shwetha SKK. Sharda S. Thimmasetty J. Shashank NN. Jayesh SP. Introduction of new method for prediction of solubility parameter using aripiprazole as a model drug. Chem. Data Collect. 2023; 44: 100995. https://doi.org/10.1016/j.cdc.2023.100995
25. Khalil SA. Abdallah OA. Moustafa MA. Absorption of some barbiturates by gambusia fish and its correlation to solubility parameter. Can. J. Pharm. Sci. 1976; 11: 126-130.
26. Kenneth CJ. Solubility and related properties, Vol.28., Marcel Dekker Inc., New York (1986).
27. Beckett AM. Stenlake JB. Practical pharmaceutical chemistry, 4th Ed, CBS Publishers., New Delhi (1986) pp 10.
28. Reinaldo GS. Holguín RA. Cristancho MD. Delgado RD. Martínez F. Extended Hildebrand Solubility Approach applied to piroxicam in ethanol + water mixtures. J. Mol. Liq. 2013; 180: 34-38. https://doi.org/10.1016/j.molliq.2012.12.028
29. Martin A. Wu P L. Velasquez T. Extended Hildebrand solubility approach: sulfonamides in binary and ternary solvents. J. Pharm. Sci. 1985; 74: 277-282. https://doi.org/10.1002/jps.2600740311.
30. Jouyban-Gharamaleki A. York P. Hanna M. Clark BJ. Solubility prediction of salmeterol xinafoate in water--dioxane mixtures. Int. J. Pharm. 200; 216: 33-41. https://doi.org/10.1016/s0378-5173(00)00694-3
31. Martin A. Paruta AN. Adjei A. Extended Hildebrand Solubility Approach: methylxanthines in mixed solvents. J. Pharm. Sci. 1981; 70: 1115-1120. https://doi.org/10.1002/jps.2600701007
32. Martin A. Miralles MJ. Extended Hildebrand solubility approach. Solubility of tolbutamide, acetohexamide and sulpha-somidine in binary solvent mixtures. J. Pharm. Sci. 1982; 71: 439-442. https://doi.org/10.1002/jps.2600710416
33. Jagdale S. Nawale RB. Extended Hildebrand Solubility Approach: Prediction and Correlation of the Solubility of Itraconazole in Triacetin: Water Mixtures at 298.15°K. Turk. J. Pharm. Sci. 2020; 17: 228-234. https://doi.org/10.4274/tjps.galenos.2019.20438
34. Reillo A. Bustamante P. Escalera B. Jimenez MM. Selle E. Solubility parameter-based methods for predicting the solubility of sulfapyridine in solvent mixtures. Drug. Dev. Ind. Pharm. 1995; 21: 2073-2084. http://dx.doi.org/10.3109/03639049509065891
35. Thimmasetty J. Subrahmanyam CVS. Satheshbabu PR. Maulik MA. Viswanath BA. Solubility behavior of pimozide in polar and nonpolar solvents: Partial solubility parameters approach. J. Sol. Chem. 2008; 37: 1365-1378. https://doi.org/10.1007/s10953-008-9317-