Author(s):
Rory A. Hutagalung, Giovani, Kristina Simanjuntak, Cut Fauziah, Hany Yusmaini, Meiskha Bahar, Niniek Hardini, Siti Nurbaya, Vivitri D. Prasasty
Email(s):
rory.hutagalung@atmajaya.ac.id , vivitri.prasasty@unas.ac.id
DOI:
10.52711/0974-360X.2024.00842
Address:
Rory A. Hutagalung1*, Giovani1, Kristina Simanjuntak2, Cut Fauziah3, Hany Yusmaini4, Meiskha Bahar5, Niniek Hardini6, Siti Nurbaya7, Vivitri D. Prasasty8*
1Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jakarta 12930, Indonesia.
2Department of Biochemistry, Faculty of Medicine, Universitas Pembangunan Nasional Veteran Jakarta, Jakarta 12450, Indonesia.
3Department of Biology, Faculty of Medicine, Universitas Pembangunan Nasional Veteran Jakarta, Jakarta 12450, Indonesia.
4Department of Pharmacology, Faculty of Medicine, Universitas Pembangunan Nasional Veteran Jakarta, Jakarta 12450, Indonesia.
5Department of Microbiology, Faculty of Medicine, Universitas Pembangunan Nasional Veteran Jakarta, Jakarta 12450, Indonesia.
6Department of Histology, Faculty of Medicine, Universitas Pembangunan Nasional Veteran Jakarta, Jakarta 12450, Indonesia.
7Department of Clinical Pathology, Faculty of Medicine, Universitas Indonesia, Jakarta 10440, Indonesia.
8Depa
Published In:
Volume - 17,
Issue - 11,
Year - 2024
ABSTRACT:
Nanoparticles have gained significant attention in various fields, including medicine and materials science, due to their unique properties and potential applications. In particular, the synthesis of nanoparticles using environmentally friendly methods, such as green synthesis involving plant extracts, has garnered interest for its sustainability and potential biomedical applications. This study aimed to synthesize gold nanoparticles in a green environment using Manilkara zapota leaf extract and evaluate their antibacterial properties. The nanoparticles exhibited antibacterial activity against Escherichia coli, Staphylococcus aureus, and Methicillin-resistant Staphylococcus aureus (MRSA) bacteria. Gold nanoparticles damaged bacterial cell walls, disrupted metabolism and produced reactive oxygen species. Higher metal ion concentrations enhanced antibacterial efficiency, with gram-positive bacteria requiring higher concentrations than gram-negative bacteria. These findings offer insights into minimum inhibition concentration and minimum bactericidal concentration determination. This research contributes to understanding green synthesis and the potential applications of plant extract-mediated nanoparticles in antibacterial treatments, emphasizing the importance of nanoparticle size and concentration in targeting bacteria.
Cite this article:
Rory A. Hutagalung, Giovani, Kristina Simanjuntak, Cut Fauziah, Hany Yusmaini, Meiskha Bahar, Niniek Hardini, Siti Nurbaya, Vivitri D. Prasasty. Green Synthesis of Gold Nanoparticles with Manilkara zapota Leaf Extract and Its Application as Antibacterial Agent. Research Journal of Pharmacy and Technology. 2024; 17(11):5509-4. doi: 10.52711/0974-360X.2024.00842
Cite(Electronic):
Rory A. Hutagalung, Giovani, Kristina Simanjuntak, Cut Fauziah, Hany Yusmaini, Meiskha Bahar, Niniek Hardini, Siti Nurbaya, Vivitri D. Prasasty. Green Synthesis of Gold Nanoparticles with Manilkara zapota Leaf Extract and Its Application as Antibacterial Agent. Research Journal of Pharmacy and Technology. 2024; 17(11):5509-4. doi: 10.52711/0974-360X.2024.00842 Available on: https://rjptonline.org/AbstractView.aspx?PID=2024-17-11-50
REFERENCES:
1. Anup K. Mohan K. Suraj S. Sandip F. Bhushan F. Prashant W. Antimicrobial activity of some important medicinal plants of India against some plant and human pathogens. Research Journal of Pharmacy and Technology. 2010; 3(3): 924-926.
2. Nair DU. Saraswathy M. Kishore N. Pully NR. Phytochemical and Antimicrobial Evaluation of Luffa cylindrica Linn. Leaf and Flower Extracts–An In-Vitro Study. Research Journal of Pharmacy and Technology. 2010; 3(2): 438-441.
3. Pandey A. Jagtap JV. Polshettiwar S. Kuchekar B. Formulation and evaluation of antibacterial and antifungal activity of herbal gel containing Aloe vera, Azadirachta indica and Lycopersicon esculentum seed extract. Research Journal of Pharmacy and Technology. 2011; 4(4): 552-554.
4. Kumar H. Bhardwaj K. Dhanjal DS. Nepovimova E. Șen F. Regassa H. Singh R. Verma R. Kumar V. Kumar D. Fruit extract mediated green synthesis of metallic nanoparticles: A new avenue in pomology applications. International Journal of Molecular Sciences. 2020; 21(22): 8458. doi.org/10.3390/ijms21228458.
5. Aslam M. Abdullah AZ. Rafatullah M. Recent development in the green synthesis of titanium dioxide nanoparticles using plant-based biomolecules for environmental and antimicrobial applications. Journal of Industrial and Engineering Chemistry. 2021; 981-16. doi.org/10.1016/j.jiec.2021.04.010.
6. Sharma B. Singh I. Bajar S. Gupta S. Gautam H. Kumar P. Biogenic silver nanoparticles: evaluation of their biological and catalytic potential. Indian Journal of Microbiology. 2020; 60468-474. doi.org/10.1007/s12088-020-00889-0.
7. Bangar SP. Sharma N. Kaur H. Kaur M. Sandhu KS. Maqsood S. Ozogul F. A review of sapodilla (Manilkara zapota) in human nutrition, health, and industrial applications. Trends in Food Science and Technology. 2022; 127319-334. doi.org/10.1016/j.tifs.2022.05.016.
8. Shaniba V. Aziz AA. Jayasree P. Kumar PM. Manilkara zapota (L.) P. Royen leaf extract derived silver nanoparticles induce apoptosis in human colorectal carcinoma cells without affecting human lymphocytes or erythrocytes. Biological Trace Element Research. 2019; 192160-174. doi.org/10.1007/s12011-019-1653-6.
9. Suhag R. Kumar R. Dhiman A. Sharma A. Prabhakar PK. Gopalakrishnan K. Kumar R. Singh A. Fruit peel bioactives, valorisation into nanoparticles and potential applications: A review. Critical Reviews in Food Science and Nutrition. 2022; 1-20. doi.org/10.1080/10408398.2022.2043237.
10. Das SK. Dhake A. Nayak A. Das N. Pandeya S. Antibacterial and antifungal activity of aerial part of plant Ammannia baccifera Linn. Research Journal of Pharmacy and Technology. 2011; 4(3): 430-432.
11. Kaura A. Sharma L. Dhar V. Spectral and antimicrobial study of some novel schiff bases and β-lactam derivatives. Research Journal of Pharmacy and Technology. 2012; 5(1): 129-132.
12. Poornima G. Abhipsa V. Rekha C. Manasa M. Kekuda PT. Antibacterial activity of combination of Polyalthia longifolia thw. extract, cow urine distillate and Streptomycin. Research Journal of Pharmacy and Technology. 2012; 5(7): 7.
13. Amilah S. Ajiningrum PS. Aisyah A. Potensi Ekstrak daun sawo Manila (Manilkara zapota) dan daun sawo Kecik (Manilkara kauki) terhadap zona hambat pertumbuhan Candida albicans. Journal Pharmasci. 2020; 5(2): 61-65. doi.org/10.53342/pharmasci.v5i2.166.
14. Ramadhani A. Saadah S. Sogandi S. Efek antibakteri ekstrak daun cengkeh (Syzygium aromaticum) terhadap Escherichia coli dan Staphylococcus aureus. Jurnal Bioteknologi and Biosains Indonesia (JBBI). 2020; 7(2): 203-214. doi.org/10.29122/jbbi.v7i2.4146.
15. Elomaa H. Seisko S. Junnila T. Sirviö T. Wilson BP. Aromaa J. Lundström M. The effect of the redox potential of aqua regia and temperature on the Au, Cu, and Fe dissolution from WPCBs. Recycling. 2017; 2(3): 14. doi.org/10.3390/recycling2030014.
16. Putri SE. Syahrir M. Biosintesis nanopartikel emas menggunakan ekstrak etanol daun jambu bol putih; Biosynthesis of gold nanoparticles using leaf ethanol extract of white bol guava. Sains dan Terapan Kimia. 2021; 15(1): 18-30. doi.org/10.20527/jstk.v15i1.9144.
17. Martínez J. Chequer N. González J. Cordova T. Alternative methodology for gold nanoparticles diameter characterization using PCA technique and UV-VIS spectrophotometry. Nanosci. Nanotechnol. 2012; 2(6): 184-189. doi.org/10.5923/j.nn.20120206.06.
18. Gan HM. Gan HY. Ahmad NH. Aziz NA. Hudson AO. Savka MA. Whole genome sequencing and analysis reveal insights into the genetic structure, diversity and evolutionary relatedness of luxI and luxR homologs in bacteria belonging to the Sphingomonadaceae family. Frontiers in Cellular and Infection Microbiology. 2015; 4188. doi.org/10.3389/fcimb.2014.00188.
19. Balouiri M. Sadiki M. Ibnsouda SK. Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis. 2016; 6(2): 71-79. doi.org/10.1016/j.jpha.2015.11.005.
20. Liu J. Du C. Beaman HT. Monroe MBB. Characterization of phenolic acid antimicrobial and antioxidant structure–property relationships. Pharmaceutics. 2020; 12(5): 419. doi.org/10.3390/pharmaceutics12050419.
21. Yilmaz MT. Minimum inhibitory and minimum bactericidal concentrations of boron compounds against several bacterial strains. Turkish Journal of Medical Sciences. 2012; 42(8): 1423-1429. doi.org/10.3906/sag-1205-83.
22. Satyapal U. Mahajan D. Tatke P. Naharwar V. Phytochemical investigation and assessment of antioxidant and antimicrobial potential of bark of Mimusops elengi. Research Journal of Pharmacy and Technology. 2014; 7(11): 1126-1230.
23. Balamurugan G. Arunkumar M. Muthusamy P. Anbazhagan S. Preliminary phytochemical screening, free radical scavenging and antimicrobial activities of Justicia tranquebariensis Linn. Research Journal of Pharmacy and Technology. 2008; 1(2): 116-118.
24. Munne S. Parwate D. Ingle V. Preliminary phytochemical screening, free radical scavenging and antimicrobial activities of Citrus auranticum fruit bio-mass. Research Journal of Pharmacy and Technology. 2009; 2(3): 607-608.
25. Safhi MM. Ali M. Sivakumar S. Jabeen A. Manohara Y. Antibacterial studies of Catharanthus roseus of Jazan province against the selected bacterial strains. Research Journal of Pharmacy and Technology. 2013; 6(4): 403-405.
26. Guzman M. Dille J. Godet S. Synthesis and antibacterial activity of silver nanoparticles against gram-positive and gram-negative bacteria. Nanomedicine: Nanotechnology, Biology and Medicine. 2012; 8(1): 37-45. doi.org/10.31838/ijpr/2020.sp2.455.