Author(s):
Dyah Aryani Perwitasari, Imaniar Noor Faridah, Ikrimah Nisa Utami, Rita Maliza, Haafizah Dania, Lalu Muhammad Irham
Email(s):
imaniar.faridah@pharm.uad.ac.id
DOI:
10.52711/0974-360X.2024.00839
Address:
Dyah Aryani Perwitasari1, Imaniar Noor Faridah1*, Ikrimah Nisa Utami2, Rita Maliza3, Haafizah Dania1, Lalu Muhammad Irham1
1Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Ahmad Dahlan, Yogyakarta, Indonesia.
2Faculty of Medicine, Universitas Muhammadiyah Jakarta, Jakarta, Indonesia.
3Biology Department, Faculty of Mathematics and Natural Sciences, Andalas University, Padang, West Sumatra, Indonesia.
*Corresponding Author
Published In:
Volume - 17,
Issue - 11,
Year - 2024
ABSTRACT:
Background: Diabetes mellitus type-2 (DMT2), as one of chronic metabolic disease, still become a major concern in the world especially for low-middle income countries include Indonesia. The role of genetic has been known associated with the pathophysiology or treatment of DMT2, such as TCF7L2. Aim: The objective of current study is to find the association between TCF7L2gene in DMT2 Indonesian patients. Methods: This study enrolled 186 DMT2 patients and 30 health subjects. The treatment outcome was measured based on fasting blood glucose and hemoglobin A1C (HbA1C). Polymorphism of TCF7L2(rs7903146 (C > G/T)) was genotyped bypolymerase chain reaction (PCR). Results: The mean average of patients in this study is 60.47 years, and most of the patients using combination treatment (52.15%), however most of the DMT2 patients is in uncontrolled conditions. There are two genotypes TCF7L2 rs7903146 presented in this study, which are CC (wildtype) and CT (heterozygous mutant), however we could not find the TT (homozygous mutant). There are no significant association between blood glucose level-genotype variation and HbA1C-genotype variation (p value > 0.05). However, the proportion of heterozygous mutant-type in the uncontrolled group is higher than wild-type. Conclusion: The variations of TCF7L2 rs7903146 is not associated with DMT2 susceptibility in Indonesian populations. However, we present the higher proportion of the wildtypeTCF7L2 rs7903146 in DMT2 subjects. There is no association between treatment outcome and genotype variation in DMT2 subjects.
Cite this article:
Dyah Aryani Perwitasari, Imaniar Noor Faridah, Ikrimah Nisa Utami, Rita Maliza, Haafizah Dania, Lalu Muhammad Irham. Association between Single-Nucleotide Polymorphism of TCF7L2gene in Diabetes Mellitus Type 2 patients in Indonesia. Research Journal of Pharmacy and Technology. 2024; 17(11):5485-0. doi: 10.52711/0974-360X.2024.00839
Cite(Electronic):
Dyah Aryani Perwitasari, Imaniar Noor Faridah, Ikrimah Nisa Utami, Rita Maliza, Haafizah Dania, Lalu Muhammad Irham. Association between Single-Nucleotide Polymorphism of TCF7L2gene in Diabetes Mellitus Type 2 patients in Indonesia. Research Journal of Pharmacy and Technology. 2024; 17(11):5485-0. doi: 10.52711/0974-360X.2024.00839 Available on: https://rjptonline.org/AbstractView.aspx?PID=2024-17-11-47
REFERENCES:
1. International Diabetes Federation. IDF Diabetes Atlas, 9th Edition.; 2019.
2. Khan MAB, Hashim MJ, King JK, Govender RD, Mustafa H, Al Kaabi J. Epidemiology of Type 2 Diabetes - Global Burden of Disease and Forecasted Trends. J Epidemiol Glob Health. 2020; 10(1): 107-111. doi:10.2991/jegh.k.191028.001
3. Chandramore K. Review on Dipeptidyl Peptidase IV Inhibitors as a Newer Target for Diabetes Mellitus Treatment. Asian J Pharm Res. 2017; 7(4): 230-238. doi:10.5958/2231-5691.2017.00036.3
4. Saeedi P, Petersohn I, Salpea P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9(th) edition. Diabetes Res Clin Pract. 2019; 157: 107843. doi:10.1016/j.diabres.2019.107843
5. Raphael M, K V, GirishThunga, Rao K, N S. Utilization Pattern of Anti-Diabetic Drugs in Type 2 Diabetes Mellitus in Tertiary Care Hospital. Res J Pharm Technol. 2017; 10(7): 2063-2068. doi:10.5958/0974-360X.2017.00360.2
6. Perwitasari DA, Faridah IN, Supadmi W, et al. The Impact of Diabetes Distress on the Treatment Outcome. Res J Pharm Technol. 2019; 12(1): 223-226. doi:10.5958/0974-360X.2019.00041.6
7. Dewangan V, Pandey H. Pathophysiology and Management of Diabetes: A Review. Res J Pharmacol Pharmacodyn. 2017; 9(4): 219-222. doi:10.5958/2321-5836.2017.00039.8
8. Ministry of Health Republic of Indonesia. Indonesia Health Profile 2019.; 2020. https://pusdatin.kemkes.go.id/resources/download/pusdatin/profil-kesehatan-indonesia/Profil-Kesehatan-indonesia-2019.pdf
9. Harding JL, Pavkov ME, Magliano DJ, Shaw JE, Gregg EW. Global trends in diabetes complications : a review of current evidence. Diabetologia. 2019; 62: 3-16.
10. Dal Canto E, Ceriello A, Rydén L, et al. Diabetes as a cardiovascular risk factor: An overview of global trends of macro and micro vascular complications. Eur J Prev Cardiol. 2019; 26(2_suppl): 25-32. doi:10.1177/2047487319878371
11. S.K A, M VA. An Improvement in Patient Compliance in Diabetes Mellitus. Res J Pharm Technol. 2018; 11(2): 587-592. doi:10.5958/0974-360X.2018.00108.7
12. V G, Sahu SK, Susila C. Assess Quality of Life (QOL) and Glycemic Level among Type 2 Diabetic Patients in Global Hospital and Research Centre and its Units, Sirohi, Rajasthan. Asian J Nurs Educ Res. 2017; 7(4): 577-582. doi:10.5958/2349-2996.2017.00112.4
13. S J, Babu M. Knowledge of Diabetic Clients Regarding Self-care Practices in Management of type II Diabetes Mellitus at selected Rural Community of Bangalore, Karnataka. Asian J Nurs Educ Res. 2017; 7(1): 86-94. doi:10.5958/2349-2996.2017.00018.0
14. Kolb H, Martin S. Environmental/lifestyle factors in the pathogenesis and prevention of type 2 diabetes. BMC Med. 2017; 15(1). doi:10.1186/s12916-017-0901-x
15. Tremblay J, Hamet P. Environmental and genetic contributions to diabetes. Metabolism. 2019; 100S: 153952. doi:10.1016/j.metabol.2019.153952
16. Sheng T, Lu Y, Yang K, et al. Association Between Single Nucleotide Polymorphisms (SNPs) in the Promoter of Adiponectin Gene, Hypoadiponectinemia, and Diabetes. Res J Sci Technol. 2016; 8(1): 34-40. doi:10.5958/2349-2988.2016.00004.8
17. Ranjan S, Sharma PK. Association of Brain-Derived Neurotrophic factor (BDNF) gene SNP G196A with Type 2 Diabetes and Obesity: A Meta- Analysis. Res J Pharm Technol. 2017; 10(12): 4297-4305. doi:10.5958/0974-360X.2017.00787.9
18. Singh A, Singh S, Anbarasu A. In silico Evaluation of Non-Synonymous SNPs in IRS-1 Gene associated with type II Diabetes Mellitus. Res J Pharm Technol. 2018; 11(5): 1957-1961. doi:10.5958/0974-360X.2018.00363.3
19. Nasykhova YA, Tonyan ZN, Mikhailova AA, Danilova MM, Glotov AS. Pharmacogenetics of Type 2 Diabetes-Progress and Prospects. Int J Mol Sci. 2020; 21(18). doi:10.3390/ijms21186842
20. Zhou K, Yee SW, Seiser EL, et al. Variation in the glucose transporter gene SLC2A2 is associated with glycemic response to metformin. Nat Genet. 2016; 48(9): 1055-1059. doi:10.1038/ng.3632
21. Katsoulis K, Paschou SA, Hatzi E, Al. E. TCF7L2 gene variants predispose to the development of type 2 diabetes mellitus among individuals with metabolic syndrome. Hormones. 2018; 17: 359–365.
22. Assmann TS, Duarte GCK, Rheinheimer J, Crispim D. The TCF7L2 rs7903146 (C/T) polymorphism is associated with risk to type 2 diabetes mellitus in Southern-Brazil. Arq Bras Endocrinol Metab. 2014; 58(9): 918-925. doi:10.1590/0004-2730000003510
23. Ingelsson E, McCarthy MI. Human Genetics of Obesity and Type 2 Diabetes Mellitus: Past, Present, and Future. Circ Genomic Precis Med. 2018; 11(6): e002090. doi:10.1161/CIRCGEN.118.002090
24. Becker ML, Pearson ER, Tkáč I. Pharmacogenetics of oral antidiabetic drugs. Int J Endocrinol. 2013; 2013. doi:10.1155/2013/686315
25. Isakova J, Talaibekova E, Vinnikov D, Saadanov I, Aldasheva N. ADIPOQ, KCNJ11 and TCF7L2 polymorphisms in type 2 diabetes in Kyrgyz population: A case-control study. J Cell Mol Med. 2019; 23(2): 1628-1631. doi:10.1111/jcmm.14061
26. Grant SFA. The TCF7L2 Locus : A Genetic Window Into the Pathogenesis of Type 1 and Type 2 Diabetes. Diabetes Care. 2019; 42(September):1624-1629. doi:10.2337/dci19-0001
27. Ahmed NS, Hadi YA, Dhefer IH. Polymorphism Study of TCF7L2 gene and related to some biochemical parameters in DM2 females Iraqi patients. Res J Sci Technol. 2019; 11(1): 01-08. doi:10.5958/2349-2988.2019.00001.9
28. Pearson ER, Donnelly LA, Kimber C, et al. Brief Report : Variation in TCF7L2 Influences Therapeutic Response to Sulfonylureas. Diabetes. 2007; 56(August): 2178-2182. doi:10.2337/db07-0440.E.R.P.
29. Javorsky M, Babjaková E, I LK, et al. Association between TCF7L2 Genotype and Glycemic Control in Diabetic Patients Treated with Gliclazide. Int J Endocrinol. Published online 2013. doi:https://doi.org/10.1155/2013/374858
30. Saraswati MR, Suastika K, Malik SG, Sudoyo H. TCF7L2 gene polymorphisms rs12255372, rs7903146, rs10885406 and the association with type 2 diabetes in a population of Legian Village, Kuta, Bali. Indones J Biomed Sci. 2017; 11(2): 6-10.
31. Sahrani WA, Astuti I, Sadewa AH. Polymorphism of Transcription Factor 7-Like 2 Gene and HOMA-β Level of Individuals With and Without Type 2 Diabetes Mellitus Family History. Indones J Biotechnol. 2014; 19(2): 176. doi:10.22146/ijbiotech.9312
32. Seiglie JA, Marcus ME, Ebert C, et al. Diabetes Prevalence and Its Relationship With Education, Wealth, and BMI in 29 Low- and Middle-Income Countries. Diabetes Care. 2020; 43(4): 767-775. doi:10.2337/dc19-1782
33. Dagenais GR, Gerstein HC, Zhang X, et al. Variations in Diabetes Prevalence in Low-, Middle-, and High-Income Countries: Results From the Prospective Urban and Rural Epidemiological Study. Diabetes Care. 2016; 39(5): 780-787. doi:10.2337/dc15-2338
34. Dujic T, Bego T, Malenica M, et al. Effects of TCF7L2 rs7903146 variant on metformin response in patients with type 2 diabetes. Bosn J basic Med Sci. 2019; 19(4): 368-374. doi:10.17305/bjbms.2019.4181
35. Shokouhi S, Delpisheh A, Haghani K, Mahdizadeh M, Bakhtiyari S. Association of rs7903146, rs12255372, and rs290487 polymorphisms in TCF7L2 gene with type 2 diabetes in an Iranian Kurdish ethnic group. Clin Lab. 2014; 60(8): 1269-1276. doi:10.7754/clin.lab.2013.130809
36. Wang J, Li L, Zhang J, et al. Association of rs7903146 (IVS3C/T) and rs290487 (IVS3C/T) polymorphisms in TCF7L2 with type 2 diabetes in 9,619 Han Chinese population. PLoS One. 2013; 8(3): e59053. doi:10.1371/journal.pone.0059053
37. Chang YC, Chang TJ, Jiang YD, et al. Association study of the genetic polymorphisms of the transcription factor 7-like 2 (TCF7L2) gene and type 2 diabetes in the Chinese population. Diabetes. 2007; 56(10): 2631-2637. doi:10.2337/db07-0421
38. Acharya S, Al-Elq A, Al-Nafaie A, Muzaheed M, Al-Ali A. Type 2 diabetes mellitus susceptibility gene TCF7L2 is strongly associated with hyperglycemia in the Saudi Arabia Population of the eastern province of Saudi Arabia. Eur Rev Med Pharmacol Sci. 2015; 19(16): 3100-3106.
39. Luo Y, Wang H, Han X, et al. Meta-analysis of the association between SNPs in TCF7L2 and type 2 diabetes in East Asian population. Diabetes Res Clin Pract. 2009; 85(2): 139-146. doi:10.1016/j.diabres.2009.04.024
40. Holstein A, Hahn M, Korner A, Stumvoll M, Kovacs P. TCF7L2 and therapeutic response to sulfonylureas in patients with type 2 diabetes. BMC Med Genet. 2011; 12: 30. doi:10.1186/1471-2350-12-30
41. Palizban A, Nikpour M, Salehi R, Maracy MR. Association of a common variant in TCF7L2 gene with type 2 diabetes mellitus in a Persian population. Clin Exp Med. 2012; 12(2): 115-119. doi:10.1007/s10238-011-0144-7