Author(s):
Salwa Khadoor, Rama Ibrahim, Faisal Redwan
Email(s):
khadoorsalwa@gmail.com , ramaibrahim@tishreen.edu.sy
DOI:
10.52711/0974-360X.2024.00833
Address:
Salwa Khadoor1*, Rama Ibrahim2, Faisal Redwan3
1Department of Biochemistry and Microbiology, Faculty of Pharmacy, Tishreen University, Lattakia, Syria.
2Department of Biochemistry and Microbiology, Faculty of Pharmacy, Tishreen University, Lattakia, Syria.
3Department of Laboratory Medicine, Faculty of Pharmacy, Tishreen University, Lattakia, Syria.
*Corresponding Author
Published In:
Volume - 17,
Issue - 11,
Year - 2024
ABSTRACT:
Background: Polycystic ovary syndrome (PCOS) is an endocrine disorder affecting women of reproductive age. Due to the diagnostic uncertainty of some cases and the unclear pathophysiology of the syndrome, this study aimed to assess the significance of Cancer Antigen 125(CA-125) in the diagnosis and prediction of hormonal disorders of PCOS patients. Method and Results: A total of 100 women (70 PCOS patients and 30 healthy females) were enrolled in our case-control prospective study. Both groups were of similar age (mean age 23.97 vs 24.40 years, P=0.2), while body mass index (BMI) was significantly elevated in the PCOS group compared to controls (25.72 vs 20.95kg/m2, P=0.0001). Hirsutism was estimated using the modified Ferriman-Gallwey (mFG) scoring system. A significantly elevated hirsutism score was recorded in the PCOS group compared to controls (11.72 vs 4.50, P=0.0001). Biochemical tests including CA-125 and pituitary/gonadal hormones [luteinizing hormone (LH), follicle-stimulating hormone (FSH) and total testosterone] were all measured on serum samples. A statistically significant increase in LH levels (9.26 vs 3.89mIU/ml, P=0.0001), LH/FSH ratio (1.88 vs 0.67, P=0.0001) and total testosterone levels (88.93 vs 33.15ng/dl, P=0.0001) was observed in PCOS compared to controls. No significant difference was found in the FSH levels between the two groups (P=0.06). Interestingly, the CA-125 level was significantly higher in PCOS patients than in controls (17.90 vs 7.78 U/L, P=0,0001). CA-125 was positively correlated with LH and LH/FSH ratio, and negatively with FSH. The receiver operation characteristic curve was performed to determine a diagnostic cut-off value of CA-125 for PCOS. A CA-125 value of 11.45 U/L showed high diagnostic sensitivity and specificity (96.7% and 87.1%, respectively) for PCOS. Conclusion: Data from this study suggest that CA-125 could be used as an additional diagnostic biomarker for PCOS.
Cite this article:
Salwa Khadoor, Rama Ibrahim, Faisal Redwan. The Significance of Serum CA-125 in patients with Polycystic Ovarian Syndrome and its Association with their Hormonal Status. Research Journal of Pharmacy and Technology. 2024; 17(11):5445-1. doi: 10.52711/0974-360X.2024.00833
Cite(Electronic):
Salwa Khadoor, Rama Ibrahim, Faisal Redwan. The Significance of Serum CA-125 in patients with Polycystic Ovarian Syndrome and its Association with their Hormonal Status. Research Journal of Pharmacy and Technology. 2024; 17(11):5445-1. doi: 10.52711/0974-360X.2024.00833 Available on: https://rjptonline.org/AbstractView.aspx?PID=2024-17-11-41
REFERENCES:
1. Djuraev JA, Botirov AJ, Shaumarov AZ, Sodikova S, Kuddusova S, Turabaeva D, et al. International Journal of Medical Sciences And Clinical Research Polycystic Ovary syndrome: A Modern view on the problem International Journal of Medical Sciences and Clinical Research. 2023; 03(02): 83–7 https://doi.org/10.37547/ijmscr/Volume03Issue02-16.
2. Stein IF, Leventhal ML. Amenorrhea associated with bilateral polycystic ovaries. Am J Obstet Gynecol. 1935; 29(2): 181–91.
3. Azziz R, Carmina E, Dewailly D, Diamanti-kandarakis E, Escobar-morreale HF, Futterweit W, et al. Position Statement: Criteria for Defining Polycystic Ovary Syndrome as a Predominantly Hyperandrogenic Syndrome : An Androgen Excess Society Guideline. 2014; 91(May): 4237–45 doi: 10.1210/jc.2006-0178.
4. Ehrmann DA. Polycystic Ovary Syndrome. 2005; 1223–36.
5. Christ JP, Cedars MI. Current Guidelines for Diagnosing PCOS. 2023;
6. Goodarzi MO, Dumesic DA, Chazenbalk G, Azziz R. Polycystic ovary syndrome: Etiology, pathogenesis and diagnosis. Nat Rev Endocrinol [Internet]. 2011; 7(4): 219–31. Available from: http://dx.doi.org/10.1038/nrendo.2010.217
7. Louwers Y V., Laven JSE. Characteristics of polycystic ovary syndrome throughout life. Ther Adv Reprod Heal [Internet]. 2020 Jan [cited 2023 Dec 7]; 14: 263349412091103. Available from: https://doi.org/10.1177/2633494120911038 .
8. Vijey Aanandhi M, John M. The role of thyroid dysfunction and the importance of conducting regular thyroid function tests in patients with pcos: A narrative review. Res J Pharm Technol. 2018; Dec 1; 11(12): 5672–4 doi:10.5958/0974-360X.2018.01027.2.
9. Dumesic DA, Lobo RA. Cancer risk and PCOS. Steroids [Internet]. 2013; 78(8): 782–5. Available from: http://dx.doi.org/10.1016/j.steroids.2013.04.004
10. Zuo T, Zhu M, Xu W. Roles of oxidative stress in polycystic ovary syndrome and cancers. Oxid Med Cell Longev. 2016; 2016 http://dx.doi.org/10.1155/2016/8589318.
11. Harris HR, Terry KL. Polycystic ovary syndrome and risk of endometrial, ovarian, and breast cancer: a systematic review. Fertil Res Pract. 2016; 2(1): 1–9 doi: 10.1186/s40738-016-0029-2.
12. Throwba HPK, Unnikrishnan L, Pangath M, Vasudevan K, Jayaraman S, Li M, et al. The epigenetic correlation among ovarian cancer, endometriosis and PCOS: A review. Crit Rev Oncol Hematol [Internet]. 2022;180(May):103852. Available from: https://doi.org/10.1016/j.critrevonc.2022.103852
13. Veena Kirthika S, Daggumati H, Padmanabhan K, Paul J, Sudhakar S, Senthil Selvam P. Effect of structured awareness programme on polycystic ovarian syndrome (PCOS) among adolescent girls. Res J Pharm Technol. 2019; Dec 1; 12(12): 6097–100 doi: 10.5958/0974-360X.2019.01059.X.
14. Armanini D, Boscaro M, Bordin L, Sabbadin C. Controversies in the Pathogenesis, Diagnosis and Treatment of PCOS: Focus on Insulin Resistance, Inflammation, and Hyperandrogenism. Int J Mol Sci. 2022; 23(8). doi: 10.3390/ijms23084110.
15. Dhanalakshmi S, Dhivya C. A perspective studies on herbalism for the preventive of PCOS. Res J Pharm Technol. 2018; Dec 1; 11(12): 5417–24 doi: 10.5958/0974-360X.2018.00989.7.
16. Chandran A, Merlin NJ, Ammu L, Dharan SS. Fennel treatment to pcos: An insilico evaluation to explore the therapeutic efficacy of anethole. Res J Pharm Technol. 2019; Oct 1; 12(10): 4958–62. doi: 10.5958/0974-360X.2019.00860.6.
17. Tamilselvi S, Nalini SJ, Vijayaraghavan R. Effectiveness of self help strategies {SHS} for PCOS among young adult girls at selected colleges at Chennai-pilot study report. Res J Pharm Technol. 2018; Jul 1; 11(7): 3145–8. doi: 10.5958/0974-360X.2018.00577.2.
18. Divya RR, Merlin NJ, Dharan SS. Hinguvachadi Choornam, An Insilico approach to confirm the Therapeutic Efficacy towards PCOS. Res J Pharm Technol. 2021; Jan 1; 14(1): 231–4. doi: 10.5958/0974-360X.2021.00040.8.
19. Ahamed S, Sumitra M, Chitra V. Prevalance and role of melatonin on pcos in its treatment using herbal drugs. Res J Pharm Technol. 2021. Sep 1; 14(9): 5029–33 doi: 10.52711/0974-360X.2021.00877.
20. Garg R, Malhotra J, Singh S, Singh R, Kokila BT, Agrawal P. Relationship between vitamin D and insulin resistance in polycystic ovary syndrome women. J SAFOG. 2017; 9(3): 211–5 doi: 10.5005/jp-journals-10006-1497.
21. Song Y, Yuan M, Wang G, Group F. Expert Opinion on Therapeutic Targets Update value and clinical application of MUC16 (cancer antigen 125). Expert Opin Ther Targets [Internet]. 2023; 27(8): 745–56. Available from: https://doi.org/10.1080/14728222.2023.2248376
22. McShane A, Bath J, Jaramillo AM, Ridley C, Walsh AA, Evans CM, et al. Mucus. Curr Biol. 2021; 31(15): R938–45. doi: 10.1016/j.cub.2021.06.093.
23. Felder M, Kapur A, Gonzalez-Bosquet J, Horibata S, Heintz J, Albrecht R, et al. MUC16 (CA125): Tumor biomarker to cancer therapy, a work in progress. Mol Cancer. 2014; 13(1): 1–15. doi: 10.1186/1476-4598-13-129.
24. Hasan HA, Selman MO, Jawad A. Polycystic Ovary Syndrome: does it Increase the Level of Cancer Antigen125? Merit Res J Med Med Sci [Internet]. 2020; 8(7): 327–32. Available from: http://www.meritresearchjournals.org/mms/index.htm
25. Monteiro S, franco F, Costa S, Monteiro P, Vieira H, Coelho L, et al. Prognostic value of CA125 in advanced heart failure patients. Int J Cardiol [Internet]. 2010; 140(1): 115–8. Available from: http://dx.doi.org/10.1016/j.ijcard.2008.11.023
26. Charkhchi P, Cybulski C, Gronwald J, Wong FO, Narod SA, Akbari MR. Ca125 and ovarian cancer: A comprehensive review. Cancers (Basel). 2020; 12(12): 1–29. doi: 10.3390/cancers12123730.
27. Balachandran A, Nayak S. An observational study of factors affecting CA125 levels in premenopausal women. Adv Biomed Res. 2023; 12(1): 235. doi: 10.4103/abr.abr_100_23.
28. Matsas A, Stefanoudakis D, Troupis T, Kontzoglou K, Eleftheriades M, Christopoulos P, et al. Tumor Markers and Their Diagnostic Significance in Ovarian Cancer. Life. 2023; 13(8): 1–18 doi: 10.3390/life13081689.
29. Mujawar SA, Kurude VN, Gaikwad HA, Patil VW. Utility of ovarian tumour marker cancer antigen-125 and endocrine hormonal status in polycystic ovary syndrome. J Clin Diagnostic Res. 2018; 12(10): BC01–3 doi: 10.7860/JCDR/2018/36048.12120.
30. Spritzer PM, Marchesan LB, Fighera TM. Hirsutism, Normal Androgens and Diagnosis of PCOS. 2022;1–12 .
31. Gu Y, Zhou G, Zhou F, Wu Q, Ma C, Zhang Y, et al. Life Modifications and PCOS: Old Story But New Tales. Front Endocrinol (Lausanne). 2022; Apr 13; 13. doi: 10.3389/FENDO.2022.808898/FULL.
32. Legro RS. Obesity and PCOS: Implications for Diagnosis and Treatment. Semin Reprod Med [Internet]. 2012 [cited 2024 Mar 10]; 30(6): 496. Available from: /pmc/articles/PMC3649566/
33. Hoque A, Aziz R, Karmakar P, Hossain N, Hussain F, Uddin R. Relationship of Body Mass Index and Waist Hip Ratio with Insulin Resistance in Polycystic Ovarian Syndrome Patients. IAHS Med J. 2022; 4(2): 3–7 doi: 10.3329/iahsmj.v4i2.62514.
34. Parker J. Pathophysiological Effects of Contemporary Lifestyle on Evolutionary-Conserved Survival Mechanisms in Polycystic Ovary Syndrome. Life. 2023; 13(4). doi: 10.3390/life13041056.
35. Saha A, Gupta A Das. Evaluation of biochemical parameter in polycystic ovarian disease patients attending tertiary care hospital. Int J Reprod contraception, Obstet Gynecol [Internet]. 2022; Jan 28 [cited 2023 Dec 21]; 11(2): 496–496. Available from: https://typeset.io/papers/evaluation-of-biochemical-parameter-in-polycystic-ovarian-2of1uh5x
36. Wang F, Dai W, Yang X hong, Guo Y hong, Sun Y pu. Analyses of optimal body mass index for infertile patients with either polycystic or non-polycystic ovary syndrome during assisted reproductive treatment in China. Nat Publ Gr [Internet]. 2016; (September): 1–9. Available from: http://dx.doi.org/10.1038/srep34538
37. Beydoun HA, Stadtmauer L, Beydoun MA, Russell H, Zhao Y, Oehninger S. Article Polycystic ovary syndrome , body mass index and outcomes of assisted reproductive technologies. Reprod Biomed Online [Internet]. 2009; 18(6): 856–63. Available from: http://dx.doi.org/10.1016/S1472-6483(10)60037-5
38. Yildiz BO, Bolour S, Woods K, Moore A, Azziz R. Visually scoring hirsutism. Hum Reprod Update. 2009; 16(1): 51–64 doi: 10.1093/humupd/dmp024.
39. Fatsetti L, Gambera A, Andrico S, Sartori E. Acne and hirsutism in polycystic ovary syndrome: Clinical, endocrine-metabolic and ultrasonographic differences. Gynecol Endocrinol. 2002; 16(4): 275–84. doi: 10.1080/gye.16.4.275.284.
40. Bardin CW, Lipsett MB. Testosterone and Androstenedione Blood Production Rates in Normal Women and Women withIdiopathic Hirsutism or Polycystic Ovaries *. 1967; 46(5): 891–902 doi: 10.1172/JCI105588.
41. Smet M, McLennan A. Rotterdam criteria, the end. Australas J Ultrasound Med. 2018; 21(2): 59–60. doi: 10.1002/ajum.12096.
42. Azziz R, Carmina E, Dewailly D, Diamanti-Kandarakis E, Escobar-Morreale HF, Futterweit W, et al. The Androgen Excess and PCOS Society criteria for the polycystic ovary syndrome: the complete task force report. Vol. 91, Fertility and Sterility. 2009. 456–488. doi: 10.1016/j.fertnstert.2008.06.035.
43. Ezat Hajmollarezaei. Total Testosterone Or Ultrasonographic Findings As a predictor For PCOS. Kufa Med J. 2023; 19(1): 51–8. doi: 10.36330/kmj.v19i1.11970.
44. Shah S, Banu H, Sultana T, Akhtar N, Begum A, Zamila BM, et al. Increased ratio of total testosterone to dihydrotestosterone may predict an adverse metabolic outcome in polycystic ovary syndrome. J Endocrinol Metab. 2019; 9(6): 186–92. doi: 10.14740/jem.v9i6.601.
45. Article R, Pateguana NB, Janes A, Dietary I, Program M. The contribution of hyperinsulinemia to the hyperandrogenism of polycystic ovary syndrome. :1–3.
46. Escobar-morreale F, Milla LS. Abdominal adiposity and the polycystic ovary syndrome. 2007; 18(7). doi: 10.1016/j.tem.2007.07.003.
47. Qu X, Donnelly R. Sex hormone-binding globulin (Shbg) as an early biomarker and therapeutic target in polycystic ovary syndrome. Int J Mol Sci. 2020; 21(21): 1–17 doi: 10.3390/ijms21218191.
48. Revathi R, Julius A. A biological effect of sex hormone binding globulin and testosterone in polycystic ovary syndrome (PCOS) obese women. Res J Pharm Technol. 2017; Jul 1; 10(7): 2143–5. doi: 10.5958/0974-360X.2017.00377.8.
49. Atoum MF, Alajlouni MM, Alzoughool F. A Case-Control Study of the Luteinizing Hormone Level in Luteinizing Hormone Receptor Gene (rs2293275) Polymorphism in Polycystic Ovarian Syndrome Females. Public Health Genomics. 2022; 25(3): 89–97. doi: 10.1159/000521971.
50. Revathi R, Julius A. Effect of LH/FSH ratio and its correlation with insulin resistance in PCOS obese woman of reproductive age group. Res J Pharm Technol. 2018; Jun 1; 11(6): 2217–9. doi: 10.1159/000521971.
51. Burt CM, Beller JP, Abshire MY, Collins JS, Mccartney CR, Marshall JC. Neuroendocrine dysfunction in polycystic ovary syndrome. Steroids [Internet]. 2012; 77(4): 332–7. Available from: http://dx.doi.org/10.1016/j.steroids.2011.12.007
52. Mccartney CR, Campbell RE. ScienceDirect Abnormal GnRH pulsatility in polycystic ovary syndrome : Recent insights. Curr Opin Endocr Metab Res [Internet]. 2020; 12: 78–84. Available from: https://doi.org/10.1016/j.coemr.2020.04.005
53. Ruddenklau A, Campbell RE. Neuroendocrine Impairments of Polycystic Ovary Syndrome. 2019; 160(July): 2230–42. doi: 10.1210/en.2019-00428.
54. Marshall JC, Eagleson CA. Neuroendocrine aspects of polycystic ovary syndrome. Endocrinol Metab Clin North Am. 1999; 28(2): 295–324. doi: 10.1016/S0889-8529(05)70071-2.
55. Moore AM, Campbell RE. The neuroendocrine genesis of polycystic ovary syndrome: A role for arcuate nucleus GABA neurons. J Steroid Biochem Mol Biol [Internet]. 2016; 160: 106–17. Available from: http://dx.doi.org/10.1016/j.jsbmb.2015.10.002
56. Diamanti-kandarakis E, Kouli C, Tsianateli T, Bergiele A. Therapeutic effects of metformin on insulin resistance and hyperandrogenism in polycystic ovary syndrome. 1998; 269–74.
57. Blank SK, Mccartney CR, Chhabra S, Helm KD, Eagleson CA, Chang RJ, et al. Modulation of Gonadotropin-Releasing Hormone Pulse Generator Sensitivity to Progesterone Inhibition in Hyperandrogenic Adolescent Girls — Implications for Regulation of Pubertal Maturation. 2015; 94(July 2009): 2360–6. doi: 10.1210/jc.2008-2606.
58. Shaaban Z, Khoradmehr A, Jafarzadeh Shirazi MR, Tamadon A. Pathophysiological mechanisms of gonadotropins- and steroid hormones-related genes in etiology of polycystic ovary syndrome. Iran J Basic Med Sci. 2019; 22(1): 3–16. doi: 10.22038/ijbms.2018.31776.7646.
59. Akinwunmi BO, Babic A, Vitonis AF, Cramer DW, Titus L, Tworoger SS, et al. Chronic medical conditions and CA125 levels among women without ovarian cancer. Cancer Epidemiol Biomarkers Prev. 2018; 27(12): 1483–90. doi: 10.1158/1055-9965.EPI-18-0203.
60. Id GF, Id WH, Id GA, Id EJC, Id BR, Id FMW. The diagnostic performance of CA125 for the detection of ovarian and non-ovarian cancer in primary care: A population-based cohort study. PLOS Medicine. 2020; 321: 1–18. doi: 10.1371/journal.pmed.1003295.