ABSTRACT:
A significant revolution in organic chemistry is being driven by artificial intelligence. A number of platforms, including applications for planned synthesis and reaction prediction Machine learning has successfully integrated itself into the daily work of organic chemists, enabling in synthetic issues with a specific domain. Contrary to retrosynthetic models and reaction prediction, the Despite the huge potential of response yield prediction, it has gotten less attention. accurately forecasting the rates of response conversion. Reaction generates models that specify the proportion. Chemists to choose high produced reactions and score synthesis methods, decreasing the number of tries. The reactants transformed to the wanted products. For high-capacity studies, yield estimates have primarily been made using a firm encoding of reactants, focused molecular patterns, or calculated chemicals used to describe.
Cite this article:
Adnan R. Ahmad. Chemical Reaction Prediction using Machine Learning. Research Journal of Pharmacy and Technology. 2024; 17(11):5435-8. doi: 10.52711/0974-360X.2024.00831
Cite(Electronic):
Adnan R. Ahmad. Chemical Reaction Prediction using Machine Learning. Research Journal of Pharmacy and Technology. 2024; 17(11):5435-8. doi: 10.52711/0974-360X.2024.00831 Available on: https://rjptonline.org/AbstractView.aspx?PID=2024-17-11-39
REFERENCES:
1. Dhananjaneyulu BV. Kumaraswamy K. Kinetic and thermodynamic studies on adsorption of malachite green from aqueous solution using mixed adsorbents (rice husk and egg shell). Research Journal of Pharmacy and Technology. 2016; 9(10): 1671-6. https://doi.org/10.5958/0974-360X.2016.00337.1.
2. Schwaller P. Vaucher AC. Laino T. Reymond JL. Prediction of chemical reaction yields using deep learning. Machine learning: Science and Technology. 2021; 2(1): 015016. DOI 10.1088/2632-2153/abc81d.
3. Tippabathani J. Nellore J. Suresh X. Computational Identification of microRNAs binding to the Transcription factors related to Dopamine Neurons. Research Journal of Pharmacy and Technology. 2018; 11(12): 5520-8. https://doi.org/10.5958/0974-360X.2018.01005.3.
4. Reddy AR. Kumar RB. Kumar VR. Deepthi M. Lohita TN. Sriharsha M. et al. Experimental Studies on effect of Vermicompost and NPK on Essential oil yield of Ocimum tenuiflorum var. CIM-Ayu. Research Journal of Pharmacy and Technology. 2015; 8(11): 1519-25. https://doi.org/10.5958/0974-360X.2015.00271.1.
5. Susmi MS. Kumar RS. Sreelakshmi V. Menon SV. Mohan S. Suja ST. et al. A Computational approach for identification of Phytochemicals for targeting and optimizing the inhibitors of Heat shock proteins. Research Journal of Pharmacy and Technology. 2015; 8(9): 1199-204. https://doi.org/10.5958/0974-360X.2015.00219.X.
6. Nisha H. Karavadi B. Computational analysis to identify the drug targets and their lead molecules in pancreatic cancer. Research Journal of Pharmacy and Technology. 2017; 10(6): 1708-16. https://doi.org/10.5958/0974-360X.2017.00302.X.
7. Coley CW. Thomas III DA. Lummiss JA. Jaworski JN. Breen CP. Schultz V. et al. A robotic platform for flow synthesis of organic compounds informed by AI planning. Science. 2019; 365(6453): eaax1566. https://doi.org/10.1126/science.aax1566.
8. Schwaller P. Hoover B. Reymond JL. Strobelt H. Laino T. Extraction of organic chemistry grammar from unsupervised learning of chemical reactions. Science Advances. 2021; 7(15): eabe4166. https://doi.org/10.1126/sciadv.abe4166.
9. Epps RW. Bowen MS. Volk AA. Abdel‐Latif K. Han S. Reyes KG. et al. Artificial chemist: an autonomous quantum dot synthesis bot. Advanced Materials. 2020; 32(30): 2001626. https://doi.org/10.1002/adma.202001626.
10. Toyao T. Maeno Z. Takakusagi S. Kamachi T. Takigawa I. Shimizu KI. Machine learning for catalysis informatics: recent applications and prospects. Acs Catalysis. 2019; 10(3): 2260-97. https://doi.org/10.1021/acscatal.9b04186.
11. Epps RW. Bowen MS. Volk AA. Abdel‐Latif K. Han S. Reyes KG. et al. Artificial chemist: an autonomous quantum dot synthesis bot. Advanced Materials. 2020; 32(30): 2001626. https://doi.org/10.1002/adma.202001626.
12. Farah FH. The Thermodynamic parameters of Chlorpromazine hydrochloride partitioning into Dimyrstoylphosphatidylcholine liposomes. Research Journal of Pharmacy and Technology. 2020; 13(12): 5716-20. https://doi.org/10.5958/0974-360X.2020.00995.6.
13. Choromanski K. Likhosherstov V. Dohan D. Song X. Gane A. Sarlos T. et al. Rethinking attention with performers. arXiv preprint arXiv: 2009.14794. 2020. https://doi.org/10.48550/ arXiv.2009.14794.
14. Dash S. Studies on inclusion complexes of 2-p-anisilidienyl 3-(benzothiazolyl-2’) hydrazono-5-p-anisilidiene-4 thiazolidinone with β-cyclodextrin. Research Journal of Pharmacy and Technology. 2020; 13(8): 3843-8. https://doi.org/10.5958/0974-360X.2020.00680.0.
15. Hoover B. Strobelt H. Gehrmann S. exbert: A visual analysis tool to explore learned representations in transformers models. arXiv preprint arXiv:1910.05276. 2019 Oct 11. https://doi.org/10.48550/ arXiv.1910.05276.
16. Lee-Thorp J. Ainslie J. Eckstein I. Ontanon S. Fnet: Mixing tokens with fourier transforms. arXiv preprint arXiv:2105.03824. 2021 May 9. https://doi.org/10.48550/arXiv.2105.03824.
17. Yun C. Bhojanapalli S. Rawat AS. Reddi SJ. Kumar S. Are transformers universal approximators of sequence-to-sequence functions?. arXiv preprint arXiv: 1912.10077. 2019 Dec 20. https://doi.org/10.48550/arXiv.1912.10077.
18. Grambow CA. Pattanaik L. Green WH. Reactants, products, and transition states of elementary chemical reactions based on quantum chemistry. Scientific Data. 2020 May 8; 7(1): 137. https://doi.org/10.1038/s41597-020-0460-4.
19. Schwaller P. Vaucher AC. Laino T. Reymond JL. Prediction of chemical reaction yields using deep learning. Machine learning: Science and Technology. 2021 Mar 31; 2(1): 015016. https://doi.org/10.1088/2632-2153/abc81d.
20. Huang B. Von Lilienfeld OA. Ab initio machine learning in chemical compound space. Chemical Reviews. 2021 Aug 13; 121(16): 10001-36. https://doi.org/10.1021/acs.chemrev.0c01303.
21. Balajee RM. Venkatesh K. A Survey on Machine Learning Algorithms and finding the best out there for the considered seven Medical Data Sets Scenario. Research Journal of Pharmacy and Technology. 2019; 12(6): 3059-62. https://doi.org/10.5958/0974-360X.2019.00518.3.
22. Mithra AS. Duddukuru VC. Manu KS. How artificial intelligence is revolutionizing the banking sector: The applications and challenges. Asian Journal of Management. 2023; 14(3): 166-70. https://doi.org/10.52711/2321-5763.2023.00028.
23. Kumar PJ. Sivannarayana P. Saikishore V. Hariteja S. Sharif S. Bhaskar M. et al. An overview on Combinatorial Chemistry. Research Journal of Pharmacy and Technology. 2012; 5(5): 570-9.