Author(s):
Awik P. D. Nurhayati, Muhammad Fatoni, Yofinta I. Salsabila, Sholeh Salispriaji, Edwin Setiawan, Nurul Jadid, First A. Wati, Mardi Santoso, Shabrina S. Ghaissani
Email(s):
awiknurhayati@gmail.com
DOI:
10.52711/0974-360X.2024.00830
Address:
Awik P. D. Nurhayati1*, Muhammad Fatoni1, Yofinta I. Salsabila1, Sholeh Salispriaji1, Edwin Setiawan1, Nurul Jadid1, First A. Wati2, Mardi Santoso3, Shabrina S. Ghaissani4
1Department of Biology, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Surabaya 60111, East Java, Indonesia.
2Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Surabaya, Ketintang, Surabaya 60231, East Java, Indonesia.
3Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Surabaya 60111, East Java, Indonesia.
4Stem Cell and Cancer Research (SCCR), Universitas Islam Sultan Agung, Semarang 50223, Central Java, Indonesia.
*Corresponding Author
Published In:
Volume - 17,
Issue - 11,
Year - 2024
ABSTRACT:
Unoptimum curing and controlling proliferation of cancer cells in breast is due to the presence of BCSCs (Breast cancer stem cells), which are associated with stemness, self-renewal, tumour initiation and metastasis. Similarly, overexpression of c-Myc (oncogenic transcription factor) in breast cancer has become potential as target of cancer therapy. Inhibition of c-Myc in cancer cells can increase the transcription factors FoxO family members including FoxO1, 3, 4 and their target genes involved in apoptosis, cell cycle arrest and autophagy. Trisindoline is an indole timer alkaloid natural compound, which is toxic to cancer cells. For this reason, we aim to decide the activity of one of derivate compound of trisindoline, namely as trisindoline 5 on BCSCs MDA-MB-231 through cytotoxicity, apoptosis, and gene expression of c-Myc and FoxO1, 3, 4. As a result, MTT assay showed trisindoline 5 can decrease the viability of BCSCs MDA-MB-231 with IC50 13.127µg/ml. Furthermore, flow cytometry analysis shown that trisindoline 5 can induce apoptosis 5.23% at concentration of 25µg/ml. Similarly, qPCR analysis showed the highest decrease in c-Myc was found in trisindoline 5 concentration of 25µg/ml with 0.0746-fold. Meanwhile, the highest increase FoxO1, 3, 4 expression was found in trisindoline 5 concentration of 25µg/ml, 20.6452-fold, 26.4709-fold, and 12.8341-fold respectively. Therefore, we conclude that trisindoline 5 concentration of 25µg/ml was able to decrease the expression of c-Myc and increase the expression of FoxO1, 3, 4 despites, it was not effective enough in reducing the population of BCSCs MDA-MB-231.
Cite this article:
Awik P. D. Nurhayati, Muhammad Fatoni, Yofinta I. Salsabila, Sholeh Salispriaji, Edwin Setiawan, Nurul Jadid, First A. Wati, Mardi Santoso, Shabrina S. Ghaissani. The Activity of Trisindoline 5 Compound againsts c-Myc and FoxO1, 3, 4 Gene Expression on MDA-MB-231 Breast Cancer Stem Cells. Research Journal of Pharmacy and Technology. 2024; 17(11):5427-4. doi: 10.52711/0974-360X.2024.00830
Cite(Electronic):
Awik P. D. Nurhayati, Muhammad Fatoni, Yofinta I. Salsabila, Sholeh Salispriaji, Edwin Setiawan, Nurul Jadid, First A. Wati, Mardi Santoso, Shabrina S. Ghaissani. The Activity of Trisindoline 5 Compound againsts c-Myc and FoxO1, 3, 4 Gene Expression on MDA-MB-231 Breast Cancer Stem Cells. Research Journal of Pharmacy and Technology. 2024; 17(11):5427-4. doi: 10.52711/0974-360X.2024.00830 Available on: https://rjptonline.org/AbstractView.aspx?PID=2024-17-11-38
REFERENCES:
1. Jayashree V. Velraj. M. Breast cancer and various prognostic biomarkers for the diagnosis of the disease: a review. Research J. Pharm. and Tech. 2017; 10(9): 3211-3216.doi.org/10.5958/0974-360X.2017.00570.4.
2. Aloss K. Jdeed S. Alshehabi Z. Detecting the role of CCR7-CCL21/CCL19 axis in breast cancer progression and lymph node metastasis incidence. Research J. Pharm. and Tech. 2018; 11(1): 231-235.doi.org/10.5958/0974-360X.2018.00043.4.
3. Suresh R. Benitojohnson D. Maheswari C. Venkatnarayanan R. Manavalan R. Chemo preventive activity of Triumfetta rhomboidea in 7, 12-Dimethylbenz (A) anthracene induced breast cancer in Sprague – dawley rat model. Research J. Pharm. and Tech. 2017; 10(3): 687-692. Doi.org/10.5958/0974-360X.2017.00128.7.
4. Maysarah H. Faradilla M. Sari I. Illian DN. Cancer chemopreventive effect of rodent tuber (Typhonium flagelliforme (Lood) BI) against DMBA-induced rats breast tumor. Research J. Pharm. and Tech. 2020; 13(12): 5811-5815. doi.org/10.5958/0974-360X.2020.01013.6.
5. Ahmed HH. Aglan HA. Elsayed GH. Hafez HG. Eskander EF. Quercetin offers chemopreventive potential against breast cancer by targeting a network of signaling pathways. Research J. Pharm. and Tech. 2021; 14(5): 2829-2839. doi.org/10.52711/0974-360X.2021.00499.
6. Luthfiana D. Soleha M. Prasetiyo A. Kusuma WA. Fatriani R. Nurfadhila L. Yunitasari N. Ahkam AH. Wargasetia TL. Irfandi R. Ansori ANM. Kharisma VD. Naw SW. Ullah E. Jakhmola V. Zainul R. Network pharmacology and molecular docking study to reveal the potential anticancer activity of oscillatoxin D, E, and F marine cytotoxins. Food Systems. 2023; 6(3): 365-389. doi.org/10.21323/2618-97712023-6-3-365-389.
7. Sritharan S. Sivalingam N. A comprehensive review on time-tested anticancer drug doxorubicin. Life Sciences. 2021; 278: 1-10. doi.org/10.1016/j.lfs.2021.119527.
8. Varela-López A. Battino M. Navarro-Hortal MD. Giampieri F. Forbez-Hernández TY. Romero-Márquez JM. Collado R. Quiles JL. An update on the mechanisms related to cell death and toxicity of doxorubicin and the protective role of nutrients. Food and Chemical Toxicology. 2019; 134: 1-19. doi.org/10.1016/j.fct.2019.110834.
9. Ayob AZ. Ramasamy TS. Cancer stem cells as key drivers of tumour progression. Journal of Biomedical Science. 2018; 25(20): 1-18. doi.org/10.1186/s12929-018-0426-4.
10. Hermansyah D. Putra A. Munir D. Lelo A. Amalina ND. Alif I. Synergistic effect of Curcuma longa extract in combination with Phyllanthus niruri extract in regulating annexin A2, epidermal growth factor receptor, matrix metalloproteinases, and pyruvate kinase M1/2 signaling pathway on breast cancer stem cell. Open Access Maced J Med Sci. 2021; 9(A): 271-285. doi.org/10.3889/oamjms.2021.5941.
11. Alif I. Utomo RY. Ahlina FN. Nugraheni N. Hermansyah D. Putra A. Meiyanto E. Immunopotentiation of galangal (Alpinia galangal L.) when combined with T-cells against metastatic triple-negative breast cancer, MDA-MB 231. Journal of Applied Pharmaceutical Sciences. 2021; 11(11): 53-61. doi.org/10.7324/JAPS.2021.1101107.
12. Fultang N. Chakraborty M. Peethambaran B. Regulation of cancer stem cells in triple negative breast cancer. Cancer Drug Resist. 2021; 4: 321-342. doi.org/10.20517/cdr.2020.106.
13. Liu T. Li B. Jiang Y. Zheng C. Zhang L. Wang Y. Screening and identification of novel specific markers of breast cancer stem cells. Oncology Letters. 2019; 18: 2262-2269. doi.org/10.3892/ol.2019.10535.
14. Xu B. Chen H. Que Y. Xiao W. Zeng M. Zhang X. ALKATI interacts with c-Myc and promotes cancer stem cell-like properties in sarcoma. Oncogene. 2019; 39(1): 151-163. doi.org/10.1038/s41388-019-0973-5.
15. Chen B. Wu Y. Tanaka Y. Zhang W. Small molecules targeting c-Myc oncogene: anti-cancer therapeutics. International Journal of Biological Sciences. 2014; 10(10): 1084-1096. doi.org/10.7150/ijbs.10190.
16. Schaijik BV. Davis PF. Wickremesekera AC. Tan ST. Itinteang T. Subcellular localisation of the stem cell markers OCT4, SOX2, NANOG, KLF4 and c-MYC in cancer: a review. J Clin Pathol. 2017; 71: 88-91.doi.org/10.1136/jclinpath-2017-204815.
17. Yoshida GJ. Emerging roles of Myc in stem cell biology and novel tumor therapies. Journal of Experimental and Clinical Cancer Research. 2018; 37(173): 1-20. doi.org/10.1186/s13046-018-0835-y.
18. Madden SK. de Araujo AD. Gerhardt M. Fairlie DP. Mason JM. Taking the Myc out of cancer: toward therapeutics strategies to directly inhibit c-Myc. Molecular Cancer. 2021; 20(23): 1-18. doi.org/10.1186/s12943-020-01291-6.
19. Ghaffarnia R. Nasrollahzadeh A. Bashash D. Nasrollahzadeh N. Mousavi SA. Ghaffari SH. Inhibition of c-Myc using 10058-F4 induces anti-tumor effects in ovarian cancer cells via regulation of FOXO target genes. European Journal of Pharmacology. 2021; 908(174345): 1-11. doi.org/10.1016/j.ejphar.2021.174345.
20. Zhang X. Tang N. Hadden TJ. Rishi AK. Akt, FoxO and regulation of apoptosis. Biochimica et Biophysica Acta. 2011; 1813: 1978-1986. doi.org/10.1016/j.bbamcr.2011.03.010.
21. Zhang X. Rielland M. Yalcin S. Ghaffari S. Regulation and function of FoxO transcription factors in normal and cancer stem cells: what have we learned? Current Drug Targets. 2011; 12(9): 1267-1283. doi.org/10.2174/138945011796150325.
22. Beretta GL. Corno C. Zaffaroni N. Perego P. Role of FoxO proteins in cellular response to antitumor agents. Cancers. 2019; 11(90): 1-16. doi.org/10.3390/cancers11010090.
23. Gómez-Crisóstomo NP. Martínez ER. Rivas-Arancibia S. Oxidative stress activates the transcription factors FoxO1a and FoxO3a in the hippocampus of rats exposed to low doses of ozone. Oxid. Med. Cell. Longev. 2014; (805764). doi.org/10.1155/2014/805764.
24. Kobayashi M. Aoki S. Gato K. Matsunami K. Kurosu M. Kitagawa I. Marine natural products. XXXIV. trisindoline, a new antibiotic indole trimer, produced by a bacterium of Vibrio sp. separated from the marine sponge Hyrtios altum. Chem. Pharm. Bull. 1994; 42(12): 2449-2451. doi.org/10.1248/cpb.42.2449.
25. Yoo M. Choi S. Choi KY. Yon GH. Chae J. Kim D. Zylstra GJ. Kim E. Trisindoline synthesis and anticancer activity. Biochemical and Biophysical Research Communications. 2008; 376: 96-99. doi.org/10.1016/j.bbrc.2008.08.092.
26. Annuur R.M. Titisari DA. Fadian A. Ersam T. Nuryastuti T. Santoso M. Synthesis and anti-tuberculosis activity of trisindolines. AIP Conference Proceedings. 2018; 2049: 1-5. doi.org/10.1063/1.5082493.
27. Wati FA. Santoso M. Moussa Z. Fatmawati S. Fadlan A. Judeh ZMA. Chemistry of trisindolines: natural occurrence, synthesis and bioactivity. RSC Advances. 2021; 11: 25381-25421. doi.org/10.1039/d1ra03091d.
28. Wati FA. Development of nitrogen heterocyclic compounds as antituberculosis and anticancer. Doctoral Thesis. 2021. Institut Teknologi Sepuluh Nopember, Chemistry Department.
29. Ibrahim S. Putra A. Amalina ND. Nasution IPA. He Heat shock protein-70 expression in CSCs tumor-associated macrophages induced by Typhonium flagelliforme tuber extract. Journal of Applied Pharmaceutical Science. 2022; 12(04): 146-152. doi.org/10.7324/JAPS.2022.120416.
30. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983; 65(1-2): 55-63. doi.org/10.1016/0022-1759(83)90303-4.
31. Novitasari D. Jenie RI. Wulandari F. Utomo RY. Putri DDP. Kato J. Meiyanto E. Curcumin-like structure (CCA-1.1) induces permanent mitotic arrest (senescence) on triple-negative breast cancer (TNBC) cells, 4T1. Research J. Pharm. and Tech. 2021; 14(8): 4375-4382. doi.org/10.52711/0974-360X.2021.00760.
32. Hajare RA. Parwani KS. Bajad SA. Chandekar NA. Chandewar AV. Breast cancer and indole-3-3-carbinol: controversy of esterogen level and enzyme elastase. Research J. Pharm. and Tech. 2009; 2(3): 439-440.
33. Zambare YB. Chitlange SS. Bhole RP. Design and screening of PPAR-γ agonist based isatin derivatives and its remarkable activity as anti-cancer and anti-diabetic. Research J. Pharm. and Tech. 2019; 12(4): 2017-2026. doi.org/10.5958/0974-360X.2019.00335.4.
34. Nurhayati APD. Rihandoko A. Fadlan A. Ghaissani SS. Jadid N. Setiawan E. Anti-cancer potency by induced apoptosis by molecular docking p53, caspase, cyclin D1, cytotoxicity analysis and phagocytosis activity of trisindoline 1, 3 and 4. Saudi Pharmaceutical Journal. 2022; 30(9): 1345-1359. doi.org/10.1016/j.jsps.2022.06.012.
35. Wanandi SI. Limanto A. Yunita E. Syahrani RA. Louisa M. Wibowo AE. Arumsari S. In silico and in vitro studies on the anti-cancer activity of andrographolide targeting survivin in human breast cancer stem cells. PLoS ONE. 2020; 15(11): e0240020.doi.org/10.1371/journal.pone.0240020.
36. Liu T. Li B. Jiang Y. Zheng C. Zhang L. Wang Y. Screening and identification of novel specific markers of breast cancer stem cells. Oncology Letters. 2019; 18: 2262-2269. doi.org/10.3892/ol.2019.10535.
37. Fani S. Kamalidehghan B. Lo KM. Nigjeh SE. Keong YS. Dehghan F. Soori R. Abdulla MA. Chow KM. Ali HM. Hajiaghaalipour F. Rouhollahi E. Hasyim NM. Anticancer activity of a monobenzyltin complex C1 against MDA-MB-231 cells through induction of apoptosis and inhibition of breast cancer stem cells. Sci. Rep. 2016; 6(38992). doi.org/10.1038/srep38992.
38. Suzery M, Cahyono B, Amalina ND. Antiproliferative and apoptosis effect of hyptolide from Hyptis pectinata (L.) Poit on human breast cancer cells. J Appl Pharm Sci. 2020; 10(02): 1-6.doi.org/10.7324/japs.2020.102001.
39. Fadeel B, Orrenius S. Apoptosis: A basic biological phenomenon with wide-ranging implications in human disease. J Intern Med. 2005; 258(6): 479-517. doi.org/10.1111/j.1365-2796.2005.01570. x.
40. Nordin ML. Kadir AA. Zakaria ZA. Abdullah R. Abdullah MNH. In vitro investigation of cytotoxic and antioxidative activities of Ardisia crispa against breast cancer cell lines, MCF-7 and MDA-MB-231. BMC Complementary and Alternative Medicine. 2018; 18(87): 1-10.doi.org/10.1186/s12906-018-2153-5.
41. Ghaissani SS. Study of trisindoline 1 compound exposure in P53 and P53R2 gene expression of cancer stem cell (CSC). Master thesis. 2022. Institut Teknologi Sepuluh Nopember, Biology Department.
42. Ramadan MAG. Baloglu MC. Altunoglu YC. Kandemirli F. Burhan H. Aygün A. Sayiner HS. Ozyigit F. Şen F. Evaluation of biological activity of 5-fluoro-isatin thiosemicarbazone derivatives. J. Nanostruct. 2020; 10(3): 509-517. doi.org/10.22052/JNS.2020.03.007.
43. Prayitno B. Santoso M. Biochemical activities of new isatin derivative against WiDr colon cancer. Journal of Physics: Conference Series. 2020; 1422: 1-6. doi/org/10.1088/1742-6596/1422/1/012017.
44. Kamal A. Srikanth YVV. Khan MNA. Shaik TB. Ashraf M. Synthesis of 3,3-diindolyl oxyindoles efficiently catalysed by FeCl3 and their in vitro evaluation for anticancer activity. Bioorganic and Medicinal Chemistry Letters. 2010; 20: 5229-5231. doi.org/10.1016/j.bmcl.2010.06.152.
45. Wang X. Wang X. Gu J. Zhou M. He Z. Wang X. Ferrone S. Overexpression of mi R-489 enhances efficacy of 5-fluorouracil based treatment in breast cancer stem cells by targeting XIAP. Oncotarget. 2017; 8(69): 113837-113846.
46. Fukumura M. Ando H. Hirai Y. Toriizuka K. Ida Y. Kuchino Y. Achyranthoside H methyl ester, a novel oleanolic acid saponin derivative from Achyranthes fauriei roots, induces apoptosis in human breast cancer MCF-7 and MDA-MB-453 cells via a caspase activation pathway. J. Nat. Med. 2009; 63: 181-188. doi.org/10.1007/s11418-008-0311-7.
47. Putra A. Riwanto I. Putra ST. Wijaya I. Typhonium flagelliforme extract induce apoptosis in breast cancer stem cells by suppressing survivin. J Can Res Ther. 2020; 16: 1302-1308. doi.org/10.4103/jcrt.JCRT_85_20.
48. Ahirwar B. Ahirwar D. In vivo and in vitro investigation of cytotoxic and antitumor activities of polyphenolic leaf extract of Hibiscus sabdariffa against breast cancer cell lines. Research J. Pharm. and Tech. 2020; 13(2): 615-620. doi.org/10.5958/0974-360X.2020.00116. X.
49. Obeng E. Apoptosis (programmed cell death) and its signals - a review. Brazilian Journal of Biology. 2020; 81(4): 1133-1143. doi.org/10.1590/1519-6984.228437.
50. Zhao Y. Alakhova DY. Zhao X. Band V. Batrakova EV. Kabanov AV. Eradication of cancer stem cells in triple negative breast cancer using doxorubicin/ pluronic polymeric micelles. Nanomedicine: Nanotechnology, Biology and Medicine. 2020; 24(102124). doi.org/10.1016/j.nano.2019.102124.
51. Barbieri F. Thellung S. Ratto A. Carra E. Marini V. Fucile C. Bajetto A. Pattarozzi A. Würth R. Gatti M. Campanella C. Vito G. Mattioli F. Pagano A. Daga A. Ferrari A. Florio T. In vitro and in vivo antiproliferative activity of metformin on stem-like cells isolated from spontaneous canine mammary carcinomas: translational implications for human tumors. BMC Cancer. 2015; 15(1): 1–17. doi.org/10.1186/s12885-015-1235-8.
52. Molofsky AV. Pardal R. Iwashita T. Park IK. Clarke MF. Morrison SJ. Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature. 2003; 425(6961): 962-967. doi.org/10.1038/nature02060.
53. Koutb F. Abdel-Rahman S. Hassouna E. Haggag A. Measurement of the gene expression and polymorphisms of c-myc and p53 genes in HBV infected patients. Online Journal of Biological Sciences. 2021; 21(1): 48-58. doi.org/10.3844/ojbsci.2021.48.58.