Author(s): Chevidaev V.V., Bokov D.O., Malinkin A.D., Makarenko M.A., Bessonov V.V., Klyukina E.S., Konovalchik D.A., Bondar A.A., Stepanova O.I., Yakubovich L.M., Malysheva M.O., Luferov A.N., Samylina I.A.

Email(s): chevidaev_v_v@staff.sechenov.ru

DOI: 10.52711/0974-360X.2024.00827   

Address: Chevidaev V.V.1*, Bokov D.O.1,2, Malinkin A.D.2, Makarenko M.A.2, Bessonov V.V.2, Klyukina E.S.1, Konovalchik D.A. 1, Bondar A.A. 1, Stepanova O.I.1, Yakubovich L.M.1, Malysheva M.O. 1, Luferov A.N.1, Samylina I.A.1
1Sechenov First Moscow State Medical University, 8 Trubetskaya St., bldg. 2, Moscow, 119991, Russian Federation.
2Federal Research Center of Nutrition, Biotechnology and Food Safety, 2/14 Ustyinsky pr., Moscow, 109240, Russian Federation.
*Corresponding Author

Published In:   Volume - 17,      Issue - 11,     Year - 2024


ABSTRACT:
Pectorales species No. 2 is a multicomponent herbal preparation with expectorant and anti-inflammatory effects. It includes coltsfoot leaves, plantain leaves, and licorice roots. This study focused on assessing the composition and content of volatile compounds and fatty acids in Pectorales species No. 2. The volatile compounds and fatty acids profile was assessed by GC-MS and GC-FID respectively. It is represented by 24 fatty acids and 91 volatile compounds. The main fatty acids in the composition of Pectorales species No. 2 are palmitic, linoleic and a-linolenic acids. The prevailing volatile lipophilic compounds are carvone, isomentone, iso-octenyl alcohol, anethole, hexyl alcohol, menthanone, cis-hex-3-enyl alcohol, benzaldehyde, pulegone, linalool, a-thujone.


Cite this article:
Chevidaev V.V., Bokov D.O., Malinkin A.D., Makarenko M.A., Bessonov V.V., Klyukina E.S., Konovalchik D.A., Bondar A.A., Stepanova O.I., Yakubovich L.M., Malysheva M.O., Luferov A.N., Samylina I.A.. Volatile compounds and fatty acids of mixture herbal product Pectorales Species No 2. Research Journal of Pharmacy and Technology. 2024; 17(11):5412-6. doi: 10.52711/0974-360X.2024.00827

Cite(Electronic):
Chevidaev V.V., Bokov D.O., Malinkin A.D., Makarenko M.A., Bessonov V.V., Klyukina E.S., Konovalchik D.A., Bondar A.A., Stepanova O.I., Yakubovich L.M., Malysheva M.O., Luferov A.N., Samylina I.A.. Volatile compounds and fatty acids of mixture herbal product Pectorales Species No 2. Research Journal of Pharmacy and Technology. 2024; 17(11):5412-6. doi: 10.52711/0974-360X.2024.00827   Available on: https://rjptonline.org/AbstractView.aspx?PID=2024-17-11-35


REFERENCES:
1.    Kachroo A. Kachroo P. Fatty acid–derived signals in plant defense. Annualreviewofphytopathology 2009; 47: 153–176.doi: 10.1146/annurev-phyto-080508-081820
2.    Gladyshev M I. Essential Polyunsaturated Fatty Acids and their Dietary Sources for Man. Journal of Siberian Federal University. Biology. 2012; 4: 352–386 [in Russian]
3.    Joshi H, Arun B Joshi, Sati H, Gururaja MP, Shetty PR, Subrahmanyam EVS, Satyanaryana D. Fatty Acids from Memecylonumbellatum (Burm.). Asian J. Research Chem. 2009; 2(2): 178–180
4.    Vaidya N.Choure R. Electrochemical analysis of fatty acids obtained from the natural resource seed of Perillafrutescens. Asian J. Research Chem. 2011; 4(5): 705–707.
5.    Bubenchikov RA.Korableva TV.Pozdnyakova TA.Kuleshova ES. The study of the fatty acid composition of compass lettuce (Lactucaserriola L.). Research J. Pharm. and Tech. 2020; 13(12): 6105–6108.doi: 10.5958/0974-360X.2020.01064.1
6.    Kurkin VA.Mubinov AR.Avdeeva HV.Ryazanova TK. Comparative research of fatty acid composition and volatile components of fatty oils from seeds of Nigella sativa and Arganiaspinosa. Research J. Pharm. and Tech. 2021; 14(3): 1586–1590. doi:10.5958/0974-360X.2021.00280.8   
7.    Ponugoti M. Panda SP.Kulandaivelu U. Rao GK.Alavala RR. Varma NJ. Isolation and evaluation of anti-inflammatory activity of epigallocatechin from Senegaliarugata along with PUFAs. Research Journal of Pharmacy and Technology. 2021; 14(11): 5739–4. doi:10.52711/0974-360X.2021.00998  
8.    Mishra A. P. et al. Combination of essential oils in dairy products: A review of their functions and potential benefits. Lwt. 2020; 133: 110116. doi: 10.1016/j.lwt.2020.110116
9.    Suganya S. Bharathidasan R. Senthilkumar G. Madhanraj P. Panneerselvam A. Antibacterial activity of essential oil extracted from Coriandrumsativam (L.) and GC-MS analysis. Research J. Science and Tech. 2012; 4(5): 203–207
10.    Malathy BR. Ajitha PS. Sangeetha KS. Thampy S. Kamala G. Antimicrobial activity of commercial essential oils on human pathogens. Research Journal of Pharmacy and Technology. 2021; 14(8): 4440–4. doi: 10.52711/0974-360X.2021.00771
11.    Joicy CM. Sivaraj C. Arumugam P. In-vitro antioxidant, antidiabetic, antibacterial and cytotoxic activities of essential oil extracted from flowers of Illiciumverum L. Research Journal of Pharmacy and Technology. 2021; 14(5): 2452–8. doi:10.52711/0974-360X.2021.00431
12.    Ridwan RD, Sidarningsih, Wijayanti U. The anti-bacterial activity of gingival mucoadhesive patch from Thymus vulgaris essential oil towards Aggregatibacter actinomycetemcomitans and Fusobacteriumnucleatum. Research J. Pharm. and Tech. 2021; 14(2): 645–649. doi:10.5958/0974-360X.2021.00115.3  
13.    Labiad H.Aljaiyash A.Ghanmi M.Satrani B.Ettahir A.Aouane M.Fadli M.Chaouch A. Exploring the provenance effect on chemical composition and pharmacological bioactivity of the Moroccan essential oils of Laurusnobilis. Research J. Pharm. and Tech. 2020; 13(9): 4067–4076. doi:10.5958/0974-360X.2020.00719.2
14.    Mazzutti S. et al. Green-based methods to obtain bioactive extracts from Plantagomajor and Plantagolanceolata. The Journal of Supercritical Fluids. 2017; 119: 211–220. doi: 10.1016/j.supflu.2016.09.018
15.    Adom MB. et al. Chemical constituents and medical benefits of Plantago major. Biomedicine and Pharmacotherapy. 2017; 96: 348–360. doi: 10.1016/j.biopha.2017.09.152
16.    Wagner J. Granvogl M.Schieberle P. Characterization of the key aroma compounds in raw licorice (Glycyrrhiza glabra L.) by means of molecular sensory science. Journal of Agricultural and Food Chemistry. 2016; 64(44): 8388–8396. doi: 10.1021/acs.jafc.6b03676
17.    Gyawali R. et al. Effect of γ-irradiaton on the volatile compounds of licorice (Glycyrrhizauralensis Fischer). European Food Research and Technology. 2008; 226(3): 577–582. doi: 10.1007/s00217-007-0591-2
18.    Yunusova S. G. et al. Lipids of Glycyrrhizaglabra roots. Russian Chemical Bulletin. 1995; 44(2): 359–362. doi: 10.1007/BF00702152     [in Russian]
19.    Norani M. Ebadi MT.Ayyari M. Volatile constituents and antioxidant capacity of seven Tussilagofarfara L. populations in Iran. Scientia Horticulturae. 2019; 257: 108635. doi: 10.1016/j.scienta.2019.108635
20.    Kacuba IK. Kislichenko VS. Novosel EN. Study of the fatty acid composition of leaves, flowers and roots of coltsfoot. Aktual'nyeproblemymediciny. 2013; 23(18): 161. [in Russian]
21.    Golay PA. Moulin J. Determination of labeled fatty acids content in milk products, infant formula, and adult/pediatric nutritional formula by capillary gas chromatography: Collaborative study, final action 2012.13. Journal of AOAC International. 2012; 99(1): 210–222.
22.    Golay PA. Dong Y. Determination of labeled fatty acids content in milk products, infant formula, and adult/pediatric nutritional formula by capillary gas chromatography: Single-Laboratory Validation, First Action 2012.13. Journal of AOAC International. 2015; 98 (6): 1679–1696.


Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available