Author(s):
Diah Diah, Chiquita Prahasanti, Retno Puji Rahayu
Email(s):
chiquita-p-s@fkg.unair.ac.id
DOI:
10.52711/0974-360X.2024.00814
Address:
Diah Diah1,2, Chiquita Prahasanti3*, Retno Puji Rahayu4
1Doctoral Program, Faculty of Dental Medicine, Universitas Airlangga, Surabaya 60132, Indonesia.
2Department of Periodontics, Faculty of Dental Medicine, Universitas Brawijaya, Malang 65145, Indonesia.
3Department of Periodontics, Faculty of Dental Medicine, Universitas Airlangga, Surabaya 60132, Indonesia.
4Department of Oral Pathology and Maxillofacial, Faculty of Dental Medicine, Universitas Airlangga, Surabaya 60132, Indonesia.
*Corresponding Author
Published In:
Volume - 17,
Issue - 11,
Year - 2024
ABSTRACT:
Gingivitis is one of the most common periodontal diseases that affects people worldwide. The primary treatment for gingivitis is scaling and root planing. However, despite this therapy, the problem may still recur. New strategies for treating periodontal diseases aim to maintain the natural oral microbiota while modifying the host immune response.The ultraviolet B (UVB) influences the innate and adaptive immune system. This study aimed to determine the effects of different doses of systemic ultraviolet B radiation at 310 nm in the gingiva using gingivitis rat model by observing the number of lymphocytes, macrophages, new blood vessels, fibroblasts, and interleukin (IL)-4 expression. In this study, twenty-five gingivitis Wistar rats were divided into five groups consisting of control group P0 (without UVB irradiation), and irradiation groups P1, P2, P3, and P4 (with UVB irradiation of 12.5, 25, 50, 100mJ/cm2 respectively) every day for ten days. All groups were sacrificed on day 21st, and then the number of lymphocytes, macrophages, new blood vessels, fibroblasts, and interleukin (IL)-4 expression were compared via Hematoxyline Eosin (HE), and Immunohistochemical (IHC) staining. The statistical results showed that group P2 had the highest number of lymphocytes, new blood vessels, and fibroblasts were significantly different from groups P0, P1, and P4, but not significantly different from P3. P2 also had the highest IL-4 expression, significantly different from P4 and not significantly different from P0, P1, and P3. Group P3 showed the highest number of macrophages, significantly different from groups P0 and P1 but not significantly different from groups P2 and P4. It was concluded that systemic UVB 310 nm irradiation in different doses affects the count of gingiva lymphocytes, macrophages, new blood vessels, fibroblasts, and IL-4 expression in the gingivitis rat model. The number or expression of each variable does not always increase with increasing UVB dose. At the dose of 25 mJ/cm2, almost all parameters were increased and then decreased at the higher dose.
Cite this article:
Diah Diah, Chiquita Prahasanti, Retno Puji Rahayu. Effects of Different Doses of Systemic UVB 310nm Irradiation in Gingivitis Rat Model. Research Journal of Pharmacy and Technology. 2024; 17(11):5317-4. doi: 10.52711/0974-360X.2024.00814
Cite(Electronic):
Diah Diah, Chiquita Prahasanti, Retno Puji Rahayu. Effects of Different Doses of Systemic UVB 310nm Irradiation in Gingivitis Rat Model. Research Journal of Pharmacy and Technology. 2024; 17(11):5317-4. doi: 10.52711/0974-360X.2024.00814 Available on: https://rjptonline.org/AbstractView.aspx?PID=2024-17-11-22
REFERENCES:
1. Zhang F, Geng Y, Zhao H, et al. Effects of Huanglian Jiedu Decoration in Rat Gingivitis. Evidence-based Complement Altern Med. 2018; 2018. doi:10.1155/2018/8249013
2. Kusumaningsih T, Arundina I, Tantiana, et al. The Effects of Brotowali (Tinospora crispa) Extract on The Number of Macrophage Cells in Wistar Rats (Rattus norvegicus) Suffering from Periodontitis. Res J Pharm Tech. 2021; 14(6): 3077-3081. doi:10.52711/0974-360X.2021.00538
3. Goodson JM. Disease reciprocity between gingivitis and obesity. J Periodontol. 2020; 91(S1): S26-S34. doi:10.1002/JPER.20-0046
4. Chapple ILC, Van Der Weijden F, Doerfer C, et al. Primary prevention of periodontitis: Managing gingivitis. J Clin Periodontol. 2015; 42(S16): S71-S76. doi:10.1111/jcpe.12366
5. Chandran A, Ramesh A, Varma SR, Potdar R, Natarajan P, Alsaegh MA. Effectiveness of Probiotic Yogurt in Moderate Gingivitis: A Randomized Clinical Trial. Res J Pharm Technol. 2023; 16(1): 241-244. doi:10.52711/0974-360X.2023.00044
6. S. WS, V KT, A.B. D, R.B S. Anti-infective agents in the Management of Periodontal Disease: A Review. Res J Pharm Dos Form Tech. 2015; 7(1): 82-89. doi:10.5958/0975-4377.2015.00012.9
7. Nogueira A, Furlaneto F, Gaio EJ, Castilho RM, Sanz M, Messora MR. New tendencies in non-surgical periodontal therapy Antimicrobial photodynamic therapy (aPDT). Braz Oral Res. 2021; 35: 1-18. doi:https://doi.org/10.1590/1807-3107bor-2021.vol35.0095
8. Gafar AM, Ramadan ARM, ElSaid NA, Nurelhuda NM. Effect of Gum Arabic on plaque-induced gingivitis: A randomised controlled trial. Saudi Dent J. 2022; 34(6): 494-502. doi:10.1016/j.sdentj.2022.06.002
9. Jethawa S, Gopale O, Shelke S. Herbal mouthwash: A Review. Res J Pharma Dos Forms Tech. 2022; 14(3): 217-223. doi:10.52711/0975-4377.2022.00035
10. Ahamed SA, Murugan T. Periodontal Vaccine as Host Modulating Agent in Periodontal Therapy – An Overview. Res J Pharm Tech. 2016; 9(7): 972-976. doi:10.5958/0974-360X.2016.00186.4
11. Hart PH, Norval M. More Than Effects in Skin: Ultraviolet Radiation-Induced Changes in Immune Cells in Human Blood. Front Immunol. 2021; 12(June): 6-12. doi:10.3389/fimmu.2021.694086
12. Tahir KA, Djawad K, Sartini S, et al. Collagen Thickness and Density in BALB/c Mice Exposed to UVB Light after using Siam Weeds Cream (Chromolaena odorata L.). Res J Pharm Technol. 2022; 15(9): 4099-4. doi:10.52711/0974-360X.2022.00688
13. Bernard JJ, Gallo RL, Krutmann J. Photoimmunology: how ultraviolet radiation affects the immune system. Nat Rev Immunol. 2019; 19(11): 688-701. doi:10.1038/s41577-019-0185-9
14. Schweintzger N, Gruber-Wackernagel A, Reginato E, et al. Levels and function of regulatory T cells in patients with polymorphic light eruption: Relation to photohardening. Br J Dermatol. 2015; 173(2): 519-526. doi:10.1111/bjd.13930
15. Takada A, Matsushita K, Horioka S, Furuichi Y, Sumi Y. Bactericidal effects of 310 nm ultraviolet light-emitting diode irradiation on oral bacteria. BMC Oral Health. 2017; 17(1): 1-10. doi:10.1186/s12903-017-0382-5
16. Mai ZM, Byrne SN, Little MP, Sargen MR, Cahoon EK. Solar UVR and Variations in Systemic Immune and Inflammation Markers. JID Innov. 2021; 1(4): 100055. doi:10.1016/j.xjidi.2021.100055
17. Trend S, Jones AP, Cha L, et al. Short-term changes in frequencies of circulating leukocytes associated with narrowband UVB phototherapy in people with clinically isolated syndrome. Sci Rep. 2019; 9(1): 1-13. doi:10.1038/s41598-019-44488-6
18. Li Y, Li B, Liu Y, et al. Porphyromonas gingivalis lipopolysaccharide affects oral epithelial connections via pyroptosis. J Dent Sci. 2021; 16(4): 1255-1263. doi:10.1016/j.jds.2021.01.003
19. Diah D, Prahasanti C, Rahayu RP, Wijayanto VR. Characterization of ultraviolet B light emitting diodes (UVB LED) irradiation device for Wistar rats as an experimental animal model. Bali Med J. 2023; 12(3): 2516-2520. doi:10.15562/bmj.v12i3.4639
20. Sharma MC, Sharma M. Novel applications of Cold Atmospheric Plasma for the treatment of Plaque Psoriasis. Res J Pharm Tech. 2023; 16(5): 2543-2548. doi:10.52711/0974-360X.2023.00418
21. Gaddameedhi S, Selby CP, Kemp MG, Ye R, Sancar A. The Circadian Clock Controls Sunburn Apoptosis and Erythema in Mouse Skin. J Invest Dermatol. 2015; 135(4): 1119-1127. doi:10.1038/jid.2014.508
22. Ochiai S, Nishida Y, Higuchi Y, et al. Short-range UV-LED irradiation in postmenopausal osteoporosis using ovariectomized mice. Sci Rep. 2021; 11(1): 1-13. doi:10.1038/s41598-021-86730-0
23. Kalajian TA, Aldoukhi A, Veronikis AJ, Persons K, Holick MF. Ultraviolet B Light Emitting Diodes (LEDs) Are More Efficient and Effective in Producing Vitamin D3 in Human Skin Compared to Natural Sunlight. Sci Rep. 2017; 7(1): 6-13. doi:10.1038/s41598-017-11362-2
24. Ye J, Huang H, Luo G, et al. NB-UVB irradiation attenuates inflammatory response in psoriasis. Dermatol Ther. 2020; 33(4): 1-6. doi:10.1111/dth.13626
25. Nelwan SC, Tedjosasongko U, Kuntari S, et al. The Effect of Uv-B Exposure and Vitamin K2 on the Bone Formation in Covid-19 Pandemic Era S. J Int Dent Med Res. 2021; 14(3): 1008-1013.
26. Lin MY, Lim LM, Tsai SP, et al. Low dose ultraviolet B irradiation at 308 nm with light-emitting diode device effectively increases serum levels of 25(OH)D. Sci Rep. 2021; 11(1): 1-9. doi:10.1038/s41598-021-82216-1
27. Takeuchi Y, Aoki A, Hiratsuka K, et al. Application of Different Wavelengths of LED Lights in Antimicrobial Photodynamic Therapy for the Treatment of Periodontal Disease. Antibiotics. 2023; 12(12). doi:10.3390/antibiotics12121676
28. Shime H, Odanaka M, Tsuiji M, et al. Proenkephalin+ regulatory T cells expanded by ultraviolet B exposure maintain skin homeostasis with a healing function. Proc Natl Acad Sci U S A. 2020; 117(34): 20696-20705. doi:10.1073/pnas.2000372117
29. Alaghari S, Sailesh KS. Association of Neutrophil/Lymphocyte (N/L) Ratio and Spatial and Verbal Memory in Females. Res J Pharm Tech. 2018; 11(12): 5337-5339. doi:10.5958/0974-360X.2018.00971.X
30. Alvarez C, Rojas C, Rojas L, Cafferata EA, Monasterio G, Vernal R. Regulatory T lymphocytes in periodontitis: a translational view. Mediators Inflamm. 2018; 2018. doi:10.1155/2018/7806912
31. Kokubo K, Onodera A, Kiuchi M, Tsuji K, Hirahara K, Nakayama T. Conventional and pathogenic Th2 cells in inflammation, tissue repair, and fibrosis. Front Immunol. 2022; 13(August): 1-17. doi:10.3389/fimmu.2022.945063
32. Farid A, Tawfik A, Elsioufy B, Safwat G. Narrow band ultraviolet B therapy deactivates Th1/Th17 pathway and activates Th2 cytokines secretion in Egyptian psoriatic arthritis patients. J Radiat Res Appl Sci. 2020; 13(1): 356-361. doi:https://doi.org/10.1080/16878507.2020.1742443
33. Orekhov AN, Orekhova VA, Nikiforov NG, et al. Monocyte differentiation and macrophage polarization. Vessel Plus. 2019; 2019. doi:10.20517/2574-1209.2019.04
34. Masson JJR. The Role of Macrophages in the Regulation of Systemic Metabolism. The University of Queensland; 2022.
35. Mosser DM, Hamidzadeh K, Goncalves R. Macrophages and the maintenance of homeostasis. Cell Mol Immunol. 2021; 18(3): 579-587. doi:10.1038/s41423-020-00541-3
36. Allen JE. IL-4 and IL-13: Regulators and Effectors of Wound Repair. Annu Rev Immunol. 2023; 41: 229-254. doi:10.1146/annurev-immunol-101921-041206
37. Zhou LN, Bi CS, Gao LN, An Y, Chen F, Chen FM. Macrophage polarization in human gingival tissue in response to periodontal disease. Oral Dis. 2019; 25(1): 265-273. doi:10.1111/odi.12983
38. Yao Y, Xu XH, Jin L. Macrophage polarization in physiological and pathological pregnancy. Front Immunol. 2019; 10(MAR): 1-13. doi:10.3389/fimmu.2019.00792
39. Pan W, Wang Q, Chen Q. The cytokine network involved in the host immune response to periodontitis. Int J Oral Sci. 2019; 11(3). doi:10.1038/s41368-019-0064-z
40. Willenborg S, Sanin DE, Jais A, et al. Mitochondrial metabolism coordinates stage-specific repair processes in macrophages during wound healing. Cell Metab. 2021; 33(12): 2398-2414.e9. doi:10.1016/j.cmet.2021.10.004
41. Frial Gemeel A. Polymorphism of IL-4 (-590) and IL-6 (-174) is not associated with Chronic Periodontitis in Babylonian Population. Res J Pharm Technol. 2018; 11(1): 275-280. doi:10.5958/0974-360X.2018.00051.3
42. Hassan MM. The significance of interleukin 4 (IL-4) (590-C/T) gene polymorphism in Iraqi patients with type 2 diabetes mellitus: A case-control study. Res J Pharm Tech. 2019; 12(11): x5133-5137. doi:10.5958/0974-360X.2019.00889.8
43. Kelly-welch A, Hanson EM, Keegan AD. Interleukin-4 (IL-4) Pathway. 2005; 4(July): 2-4. doi:https://doi.org/10.1126/stke.2932005cm9
44. Lansky Z, Mutsafi Y, Houben L, et al. 3D mapping of native extracellular matrix reveals cellular responses to the microenvironment. J Struct Biol X. 2019; 1(July 2018): 100002. doi:10.1016/j.yjsbx.2018.100002
45. Alfonso García SL, Parada-Sanchez MT, Arboleda Toro D. The phenotype of gingival fibroblasts and their potential use in advanced therapies. Eur J Cell Biol. 2020; 99(7): 151123. doi:10.1016/j.ejcb.2020.151123
46. Srivastava R, Yadav S, Jhingran R, Madan R. Role of Fibroblast in Periodontal Heath and Disease Asian Journal of. Oral Heal Allied Sci. 2017; 7(1): 22-31. https://www.researchgate.net/publication/348381943
47. Medici D. Endothelial-Mesenchymal Transition in Regenerative Medicine. Stem Cells Int. 2016; 2016. doi:http://dx.doi.org/10.1155/2016/6962801
48. Carlini V, Noonan DM, Abdalalem E, et al. The multifaceted nature of IL-10: regulation, role in immunological homeostasis and its relevance to cancer, COVID-19 and post-COVID conditions. Front Immunol. 2023; 14(June): 1-19. doi:10.3389/fimmu.2023.1161067