Author(s):
Agustina Lia, Miatmoko Andang, Raymond R. Tjandrawinata, Hariyadi Dewi M.
Email(s):
dewi-m-h@ff.unair.ac.id
DOI:
10.52711/0974-360X.2024.00807
Address:
Agustina Lia1,2, Miatmoko Andang3,4, Raymond R. Tjandrawinata5, Hariyadi Dewi M.3*
1Doctoral Program of Pharmaceutical Science, Faculty of Pharmacy, Campus C UNAIR, Mulyorejo, Surabaya, 60115 Indonesia.
2Department of Pharmacy, Faculty of Pharmacy, Institut Ilmu Kesehatan Bhakti Wiyata, Kediri, 64114, Indonesia.
3Department of Pharmaceutical Sciences, Faculty of Pharmacy, Airlangga University, Campus C UNAIR, Mulyorejo, Surabaya, 60115, Indonesia.
4Stem Cell Research and Development Center, Airlangga University, Campus C UNAIR, Mulyorejo, Surabaya, 60115, Indonesia.
5Center for Pharmaceutical and Nutraceutical Research and Policy (CPNRP), Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia.
*Corresponding Author
Published In:
Volume - 17,
Issue - 11,
Year - 2024
ABSTRACT:
Collagen is the extracellular matrix component and is essential in maintaining skin health. Native collagen is too large to penetrate the skin epidermis when applied topically. Therefore, a protein size reduction through hydrolysis is required. The hydrolyzed product of collagen is greatly influenced by the hydrolysis method. Hydrolyzed collagen is a low molecular peptide that can penetrate the skin to increase its effectiveness as antiaging. This study aimed to compare peptide fish collagen's thermal and enzymatic hydrolysis and characterize the hydrolysates. Thermal and enzymatic processes hydrolyzed the fish collagen. The fish collagen was incubated at various temperatures (50, 60, 70, 80, 90, and 100°C) for different time incubation (1, 2, 3, 4, and 5hours) for thermal hydrolysis. Enzymatic hydrolysis was conducted by incubating fish collagen with bromelain (10U/ml) at 50°C for an hour. The peptide was characterized with electrophoresis, Lowry, hydroxyproline content, SEM (scanning electron microscope), FTIR (Fourier transform infrared), and DSC (differential scanning calorimetry). Thermal hydrolysis with variations in temperature and incubation time produces denaturized protein. Enzymatic hydrolysis with bromelain produces collagen peptides. The hydrolysis of collagen resulted in the different characteristics of hydrolyzed collagen. As seen from SEM analysis, the enzymatic hydrolysis is smaller than native. The DSC and FTIR analysis confirmed the change in physical traits between native and enzymatic hydrolysis of collagen. Collagen hydrolysate is obtained through enzymatic hydrolysis with bromelain; the observed degree of hydrolysis is 60%. Taken together, enzymatic hydrolysis was a suitable method to produce peptide collagen.
Cite this article:
Agustina Lia, Miatmoko Andang, Raymond R. Tjandrawinata, Hariyadi Dewi M.. Comparative Study of Thermal and Bromelain Enzymatic Hydrolysis of Peptide Fish Collagen: Production and Characterization of Hydrolyzed Collagen. Research Journal of Pharmacy and Technology. 2024; 17(11):5274-0. doi: 10.52711/0974-360X.2024.00807
Cite(Electronic):
Agustina Lia, Miatmoko Andang, Raymond R. Tjandrawinata, Hariyadi Dewi M.. Comparative Study of Thermal and Bromelain Enzymatic Hydrolysis of Peptide Fish Collagen: Production and Characterization of Hydrolyzed Collagen. Research Journal of Pharmacy and Technology. 2024; 17(11):5274-0. doi: 10.52711/0974-360X.2024.00807 Available on: https://rjptonline.org/AbstractView.aspx?PID=2024-17-11-15
REFERENCES:
1. Ansary TM. Hossain MR. Kamiya K., Komine M. and Ohtsuki M. Inflammatory molecules associated with ultraviolet radiation-mediated skin aging. Int J Mol Sci. 2021; 22: 8. doi.org/10.3390/ijms22083974
2. Tsatsou F. Trakatelli M. Patsatsi A. Kalokasidis K. Sotiriadis D. Extrinsic aging: UV-mediated skin carcinogenesis. Dermatoendocrinol. 2012; 4: 3. doi.org/10.4161/derm.22519.
3. Zaki MQ. Review: Physiology of Exercise and Aging Process. Res J Pharm Technol. 2016; 9(9): 1533-1535. doi: 10.5958/0974-360X.2016.00300.0.
4. Mohite SS. Momin SA. Niwate SA. Paliwal RM. Yadav KC. Shukla S. Bharati DK. The Science of Aging and Longevity. Asian J. Res. Pharm. Sci. 2023; 13(1): 33-9. doi: 10.52711/2231-5659.2023.00006.
5. Ganceviciene R. Liakou AI. Theodoridis A. Makrantonaki E. Zouboulis CC. Skin anti-aging strategies. Dermatoendocrinol. 2012; 4: 3. doi.org/10.4161/derm.22804
6. Poltavets V. Kochetkova M. Pitson SM. Samuel MS. The role of the extracellular matrix and its molecular and cellular regulators in cancer cell plasticity. Front Oncol. 2018; 8: 431. doi.org/10.3389/fonc.2018.00431.
7. Purwanti T. Rosita N, Nurjannah FF. Additional Effects of Extra Virgin Olive Oil (EVOO) on The Physicochemical Stability of Tomato Paste as a Topical Anti-Aging. Res J Pharm Technol. 2022; 15(12): 5919-6. doi: 10.52711/0974-360X.2022.00997.
8. Mudjihartini N, Paramita R. Prijanti AR. Sarsanti PAN. Fadilah F. Purwaningsih EH. The Effects of Centella asiatica and Acalypha indica L. Extracts on Aging Process. Res J Pharm Technol. 2020; 13(2): 787-790. doi: 10.5958/0974-360X.2020.00148.1.
9. Asserin J. Lati E. Shioya T. Prawitt J. The effect of oral collagen peptide supplementation on skin moisture and the dermal collagen network: Evidence from an ex vivo model and randomized, placebo-controlled clinical trials. J Cosmet Dermatol. 2015; 14(4): 291–301. doi.org/10.1111/jocd.12174
10. Sato K. The presence of food-derived collagen peptides in human body structure and biological activity. Food Funct. 2017; 8(12): 4325–4330. doi.org/10.1039/c7fo01275f
11. Yamada S. Nagaoka H. Terajima M. Tsuda N. Hayashi Y. Yamauchi M. Effects of fish collagen peptides on collagen post-translational modifications and mineralization in an osteoblastic cell culture system. Dent Mater J. 2013; 32(1): 88-95. doi: 10.4012/dmj.2012-220.
12. Thiruchekvi R. Priyadharshini S. Muguthan P. and Rajakumari K. Collagen –Zinc Oxide Nanoparticles (ZnO NPs) Composites for Wound Healing – A Review. Res J Pharm Technol. 2022; 15(6): 2838-4. doi: 10.52711/0974-360X.2022.00474.
13. Ulfah N. Santoso SR. Bargowo L. Kurnia S. Prahasanti C. The Viability of Collagen Peptide from Osphronemus goramy Fish Scale Extract on Human Gingival Fibroblast. Res J Pharm Technol. 2022; 15(8): 3497-1. doi: 10.52711/0974-360X.2022.00586.
14. Hanafi. Dhina Aprilia NW. Setyawati SR. Rochaeni H. Solihat I. Functional Drinks Prepared from Red Dragon Fruit Peel (Hylocereus lemairei (Hook.) Britton and Rose) and Catfish (Clarias gariepinus sp.) Bone Gelatin. Res J Pharm Technol. 2023; 16(7):3207-2. doi: 10.52711/0974-360X.2023.00527.
15. Addad S. Exposito JY. Faye C. Ricard-Blum S. Lethias C. Isolation, characterization and biological evaluation of jellyfish collagen for use in biomedical applications. Marine Drugs. 2011a; 9(6): 967–983. doi: 10.3390/md9060967.
16. Mullins RJ. Richards C. Walker T. Allergic reactions to oral, surgical and topical bovine collagen: Anaphylactic risk for surgeons. Aust N Z J Ophthalmol. 1996a; 24(3): 257–260. doi: 10.1111/j.1442-9071.1996.tb01589.x.
17. Oktarlina RZ. Bahri S. Adjeng ANT. Production and Characterization of Mikro-Collagen from Carp Scales Waste (Cyprinus carpio). Res J Pharm Technol. 2022; 15(5): 1995-2. Doi:10.52711/0974-360X.2022.00331.
18. Adawiyah NR. Zulkifeli N. Zain HHM. Zainol I. Musa NH. The Properties of Hydrolysed Collagen from Oreochromis Mossambicus’s Scale and Their Effect Towards Cell Viability. Res J Pharm Technol. 2020; 13(12): 5855-5860. doi: 10.5958/0974-360X.2020.01020.3.
19. Gelse K. Pöschl E. Aigner T. Collagens—structure, function, and biosynthesis. Adv Drug Deliv Rev. 2003b; 55(12): 1531–1546. doi: 10.1016/j.addr.2003.08.002.
20. Schrieber R. Gareis H. Gelatine Handbook: Theory and Industrial Practice. John Wiley & Sons. 2007b.
21. Sorushanova A. Delgado LM. Wu Z. Shologu N. Kshirsagar A. Raghunath R. Mullen AM. Bayon Y. Pandit A. Raghunath, M. The collagen suprafamily: from biosynthesis to advanced biomaterial development. Adv Mater. 2019a; 31(1): 1801651. doi: 10.1002/adma.201801651.
22. Bhagwat PK. Dandge PB. Isolation, characterization and valorizable applications of fish scale collagen in food and agriculture industries. Biocatal Agric Biotechnol. 2016; 7: 234–240. doi.org/10.1016/j.bcab.2016.06.010.
23. Addad S. Exposito JY. Faye C. Ricard-Blum S. Lethias C. Isolation, characterization and biological evaluation of jellyfish collagen for use in biomedical applications. Mar Drugs. 2011b: 9(6): 967–983. doi: 10.3390/md9060967.
24. Edgar S. Hopley B. Genovese L. Sibilla S. Laight D. Shute J. Effects of collagen-derived bioactive peptides and natural antioxidant compounds on proliferation and matrix protein synthesis by cultured normal human dermal fibroblasts. Sci Rep. 2018b; 8(1): 10474. Doi: 10.1038/s41598-018-28492-w.
25. Ito N. Seki S. Ueda F. Effects of a composite supplement containing collagen peptide and ornithine on skin conditions and plasma IGF-1 levels-A randomized, double-blind, placebo-controlled trial. Mar Drugs. 2018b; 16(12): 482. doi: 10.3390/md16120482.
26. Chai HJ, Li JH, Huang HN, Li TL, Chan YL, Shiau CY, and Wu CJ. Effects of sizes and conformations of fish-scale collagen peptides on facial skin qualities and transdermal penetration efficiency. J Biomed Biotechnol, 2010a. Doi: 10.1155/2010/757301.
27. Chvapli M. Eckmayer Z. Role of proteins in cosmetics. Int J Cosmet Sci. 1985a; 7(2): 41–49. Doi: 10.1111/j.1467-2494.1986.tb00395.x.
28. Dhapake PR. Baheti JR. Suruse P. Nanoparticulate Drug Delivery: A Promising Drug Delivery for Protein Drug. Asian J. Res. Pharm. Sci. 2023; 13(2): 139-4. doi: 10.52711/2231-5659.2023.00025.
29. Mankar SD. Jadhav BS. Kale AN. Basics and Recent Advances in Peptide and Protein Drug Delivery. Asian J. Res. Pharm. Sci. 2023; 13(3): 207-2. doi: 10.52711/2231-5713.2023.00037.
30. Arshad ZIM. Amid A. Yusof F. Jaswir I. Ahmad K. Loke SP. Bromelain: An overview of industrial application and purification strategies. In Appl Microbiol Biotechnol. 2014a; 98(17): 7283–7297. https://doi.org/10.1007/s00253-014-5889-y.
31. Ketnawa S. Rawdkuen S. Chaiwut, P. Two-phase partitioning and collagen hydrolysis of bromelain from pineapple peel Nang Lae cultivar. Biochem Eng J, 2010; 52(2–3): 205–211. https://doi.org/10.1016/j.bej.2010.08.012.
32. Renu IC. Kumaran T. Studies on Collagen Hydrolysis by Pineapple (Ananas comosus) Stem Bromelain. Int. J. Pharm. 2019; 9: 118-126. https://doi.org/10.13140/RG.2.2.29822.13126
33. Torreggiani A. Di Foggia M. Manco I. De Maio A. Markarian,SA.Bonora S. Effect of sulfoxides on the thermal denaturation of hen lysozyme: A calorimetric and Raman study. J Mol Struct. 2008; 891(1–3): 115–122. https://doi.org/10.1016/j.molstruc.2008.03.007.
34. Yu TY. Morton JD. Clerens S. Dyer JM. Cooking-Induced Protein Modifications in Meat. Compr Rev Food Sci Food Saf. 2017; 16(1): 141–159. https://doi.org/10.1111/1541-4337.12243.
35. Zielbauer BI. Franz J. Viezens B. Vilgis, TA. Physical Aspects of Meat Cooking: Time-Dependent Thermal Protein Denaturation and Water Loss. Food Biophys. 2016; 11(1): 34–42. https://doi.org/10.1007/s11483-015-9410-7.
36. Zhou P. Regenstein JM. Determination of total protein content in gelatin solutions with the Lowry or Biuret assay. J Food Sci. 2006; 71(8): 474-479. doi.org/10.1111/j.1750-3841.2006.00151.x.
37. Rutherfurd SM. Food Composition and Additives Methodology for Determining Degree of Hydrolysis of Proteins in Hydrolysates: A Review. J AOAC Int. 2019. 93(5): 1515-1522. Doi.org/10.1093/jaoac/93.5.1515.
38. Berthomieu C. Hienerwadel, R. Fourier transform infrared (FTIR) spectroscopy. Photosyn Res. 2009a; 101(2–3): 157–170. doi.org/10.1007/s11120-009-9439-x.
39. Gill P. Moghadam, TT. Ranjbar B. Differential Scanning Calorimetry Techniques: Applications in Biology and Nanoscience. J Biomol Tech. 2010; 21(4): 167-193.
40. Arshad ZIM., Amid A. Yusof F. Jaswir I. Ahmad K. Loke SP.Bromelain: An overview of industrial application and purification strategies. Appl Microbiol Biotechnol. 2014b; 98(17): 7283–7297. doi.org/10.1007/s00253-014-5889-y.
41. Wijaya SP. Rahayu P. Suhartono MT. Tjandrawinata, R. Molecular studies of bioactive peptides of Nile tilapia (Oreochromis niloticus) skin protein hydrolysate DLBS3D33 as MMP-2 inhibitor. J Appl Pharm Sci. 2023; 13(4): 186–198. doi.org/10.7324/JAPS.2023.53543
42. Cissell DD. Link JM. Hu JC. Athanasiou KA. A Modified Hydroxyproline Assay Based on Hydrochloric Acid in Ehrlich’s Solution Accurately Measures Tissue Collagen Content. Tissue Eng Part C Methods. 2017; 23(4): 243–250. doi.org/10.1089/ten.tec.2017.0018