Author(s):
Halimatussakdiah, Rachmawati Rahmawati, Noni Zakiah, Frengki Frengki
Email(s):
halimatussakdiah@poltekkesaceh.ac.id
DOI:
10.52711/0974-360X.2024.00737
Address:
Halimatussakdiah1*, Rachmawati Rahmawati2, Noni Zakiah3, Frengki Frengki4
1Nursing of Study Program, Aceh Health Polytechnic, Ministry of Health, Aceh Besar, Aceh, 23231, Indonesia.
2Department of Nutrition, Aceh Health Polytechnic, Ministry of Health, Aceh Besar, 23231, Indonesia.
3Departmen of Pharmacy, Aceh Health Polytechnic, Ministry of Health, Aceh Besar, 23231, Indonesia.
4Faculty of Veterinary Medicine, Syiah Kuala University, Banda Aceh, Indonesia.
*Corresponding Author
Published In:
Volume - 17,
Issue - 10,
Year - 2024
ABSTRACT:
Iron supplements in pregnant women are often combined with ascorbic acid. The electron donor ascorbic acid plays an essential role in reducing Fe+3 ions to Fe+2 so that they are easily absorbed through the DMT1 channel of human duodenal enterocyte cells. The electron transfer mechanism of ascorbic acid also allows other compounds rich in hydroxyl groups to play a role, such as compounds belonging to the phenolic-flavonoid group. The Moringa oleifera plant, apart from being known to be rich in nutrients such as ascorbic acid and high concentrations of Fe+3, also contains various secondary metabolites such as compounds belonging to the phenol-flavonoid group, alkaloids, steroids, glucosinolates, and fatty acids. This study attempted to screen 50 bioactive compounds contained in the leaves of the Moringa oleifera plant as reducing agents for Fe+3 to Fe+2 ions through the enzyme of “Human Duodenal Cytochrome B” (Dcytb). The crystal structure (3D) of the Dcytb enzyme was obtained from a web server https://www.rcsb.org/ (Pdb. id 5ZLG). Meanwhile, the 3D structures of 50 compounds from Moringa oleifera were downloaded in “SMILES” format from PubChem and converted to 3D format using the “MOE Builder tool”. The research method used molecular and dynamic molecular docking techniques through “MOE 10. 2008” software. The results of molecular docking of the Dcytb enzyme obtained 19 ligand compounds with stronger ?Gbinding values than the ascorbic acid as control ligands. The strongest affinities were shown by Quercetin-3-O-glucoside with a ?Gbinding value of -23.10 kcal/mol, Kaempferol-3-O-glucoside with a ?Gbinding value of -18.99 kcal/mol, Rutin with a ?Gbinding value -18.07 kcal/mol, Vicenin-2 with a ?Gbinding value of -17.31 kcal/mol, etc. In comparison, Ascorbic acid control has an affinity with a ?Gbinding value of -13.29 kcal/mol. All of the tested phenolic-flavonoid compounds except genistein have a hydroxyl group with a strong affinity for the Dcytb enzyme, interacting in the "pocket" region of the enzyme to form hydrogen bonds with Lys 79, Lys 83, and Arg 152. The results of the molecular dynamics simulation of glucoconringin, kaempferol-3-O-glucoside have a strong interaction and is better stable than ascorbic acid at its binding site, while epicatechin has a stability pattern similar to that of ascorbic acid observed in 2000 pc of molecular dynamics simulations. These characteristics allow Moringa oleifera to be rich in compounds that have the potential to activate the Dcytb enzyme.
Cite this article:
Halimatussakdiah, Rachmawati Rahmawati, Noni Zakiah, Frengki Frengki. Study of the Potential of the Active Compounds of Moringa oleifera Leaves in Increasing the Intake of Fe+3 in Pregnant women through Docking and Molecular Dynamics Methods on the Enzyme “Human Duodenal Cytochrome B” (Dcytb). Research Journal of Pharmacy and Technology. 2024; 17(10):4785-5. doi: 10.52711/0974-360X.2024.00737
Cite(Electronic):
Halimatussakdiah, Rachmawati Rahmawati, Noni Zakiah, Frengki Frengki. Study of the Potential of the Active Compounds of Moringa oleifera Leaves in Increasing the Intake of Fe+3 in Pregnant women through Docking and Molecular Dynamics Methods on the Enzyme “Human Duodenal Cytochrome B” (Dcytb). Research Journal of Pharmacy and Technology. 2024; 17(10):4785-5. doi: 10.52711/0974-360X.2024.00737 Available on: https://rjptonline.org/AbstractView.aspx?PID=2024-17-10-22
REFERENCES:
1. Corwin EJ. Buku Saku Patofisiologi; 2009, Edisi 3. EGC. Jakarta
2. Ministry of Health, RI. Pedoman Pencegahan dan Penanggulangan Anemia Pada Remaja Putri dan Wanita Usia Subur (WUS); 2018
3. Waryana. Gizi Reproduksi. Yogyakarta: Pustaka Rihama; 2010.
4. Camaschella C. Iron Deficiency. Blood. 2019:133 (1): 30−39.
5. Muñoz M, García-Erce J, and Remacha Á. Disorders of iron metabolism. Part II: iron deficiency and iron overload. J. Clin. Pathol. 2011: 64: 287–296. doi 10.1136/jcp.2010.086991
6. Lesjak M and Surjit S. Srai SK. Role of Dietary Flavonoids in Iron Homeostasis. Review. Pharmaceuticals 2019; 12: 119 doi:10.3390/ph12030119
7. Fleming RE, Bacon BR. Orchestration of Iron Homeostasis. N. Engl. J. Med. 2005; 352 (17): 1741−1744
8. Mackenzie, B.; Garrick, M. D. Iron Imports. II. Iron Uptake at the Apical Membrane in the Intestine. Am. J. Physiol.Gastrointest. Liver Physiol. 2005; 289(6): 981−986.
9. Udgirkar DB, and Doddayya H. Studies on Topical Gel Formulations of Flurbiprofen Containing Different Penetration Enhancers. Res. J. Topical and Cosmetic Sci. 2010; 1(1): 33-36
10. Rekha R, Anju G, Shishant S, Sheefali M, Sanju N. Effect of Chemical Enhancers on in-vitro Permeation of Losartan Potassium. Research J. Pharm. and Tech. 2012; 5(3): 346-352.
11. Vaisakh MN, and Pandey A. Assessment of curcumin release with different permeation enhancers. Research J. Pharm. and Tech. 2012; 5(3): 408-410.
12. Yanagisawa H, Miyakoshi Y, Kobayashi K, Sakae K, Kawasaki I, Suzuki Y, and Tamura J. Long-term intake of a high zinc diet causes iron deficiency anemia accompanied by reticulocytosis and extra-medullary erythropoiesis. Toxicology Letters, 2009; 191(1): 15–19. https://doi.org/10.1016/j.toxlet.20 09.07.024
13. Mulyawati Y. Perbandingan Efek Suplementasi Tablet Tambah Darah dengan dan tanpa Vitamin C terhadap Kadar Hemoglobin pada Pekerja Wanita di Perusahaan Plywood, Jakarta 2003. Universitas Indonesia.
14. Utama TA, Listiana N and Susanti D. Comparison Effect of Iron with and without Vitamin C to Age Hemoglobin Levels among Women of Reproductive Age. Jurnal Kesehatan Masyarakat Nasional, 2013; 7(8): 344–348.
15. Shamim QMd, Jitendra P, Reddy AV, Safiullah S, Mohapatra P. Phytochemicals and Pharmacological Activities of Moringa oleifera Lam. Research J. Pharmacology and Pharmacodynamics. 2010; 2(2): 183-186.
16. Desai SA, Darji D, Makwana M. In-Vitro Anti Bacterial Activity of Water Extract of Moringa oleifera Leaf Stalk. Research J. Pharmacognosy and Phytochemistry. 2011; 3(6): 297-299.
17. Okoye EI, Awotunde TO, Morales TG. Formulation and Characterization of Moringa oleifera Leaf Granules. I: Micromeritic Properties. Research J. Pharm. and Tech. 2013; 6(1): Jan. 66-74.
18. Masu NH-Md, Hamid K, Zulfiker AH, Hossain K, Urmi KF. In vitro Antioxidant Activities of Different parts of the Plant Moringa oleifera Lam. Research J. Pharm. and Tech. 2012; 5(12): 1532-1537.
19. Mahmood, K. T., Mugal, T., and Haq, I. U. Moringa oleifera: a natural gift - a review. J. Pharm. Sci Res. 2010; 2: 775–781
20. Mathur BS. Moringa Book. St. Louis, 2005. MI Trees for Life International.
21. Popoola JO, and Obembe OO. Local knowledge, use pattern, and geographical distribution of Moringa oleifera Lam. (Moringaceae) in Nigeria. J. Ethnopharmacol. 2013; 150: 682–691. doi 10.1016/j.jep.2013.09.043
22. Susilowati S, Istiqamah R, Irianto G, Ruhyandi R. Comparison of the Effectiveness of Moringa Oleifera Leaf Powder Versus Extract on Hemoglobin Levels in Adolescent Girls: A Systematic Literature Review ” in The 4th International Seminar on Global Health, KnE Medicine, 2022; 327–342. Doi: 10.18502/km.v2i2.11096
23. Vaishnav A, Chandy A, Jhade D, Rai S. Pharmacognostical and Preliminary Phytochemical Studies on Moringa olifera Leaves. Research J. Pharmacognosy and Phytochemistry. 2011; 3(6): 272-274.
24. Sahakitpichan P, Mahidol C, Disadee W, Ruchirawat S, Kanchanapoom T. Unusual glycosides of pyrrole alkaloid and 4′- hydroxyphenylethanamide from leaves of Moringa oleifera. Phytochemistry. 2011; 72: 791–795. doi 10.1016/j.phytochem.2011.02.021
25. Maiyo FC, Moodley R, and Singh M. (2016). Cytotoxicity, antioxidant, and apoptosis studies of quercetin-3-O-glucoside and 4-(beta-D- glucopyranosyl-1->4-alpha-L-rhamnopyranosyloxy)-benzyl isothiocyanate from Moringa oleifera. Anticancer. Agents Med. Chem. 2016; 16: 648–656. doi: 10.2174/1871520615666151002110424
26. Leone A, Fiorillo G, Criscuoli F, Ravasenghi S, Santagostini L, Fico G, et al. Nutritional characterization of phenolic profiling of Moringa oleifera leaves grown in Chad, Sahrawi refugee camps, and Haiti. Int. J. Mol. Sci. 2015a; 15: 18923–18937. doi: 10.3390/ijms160818923
27. Leone A, Spada A, Battezzati A, Schiraldi A, Aristil J, and Bertoli S. Cultivation, genetics, ethnopharmacology, phytochemistry, and pharmacology of Moringa oleifera leave an overview. Int. J. Mol. Sci. 2015b; 16: 12791–12835. doi: 10.3390/ijms160612791
28. Safaeian L, Asghari G, Javanmard SH, and Heidarinejad A. The effect of hydroalcoholic extract from the leaves of Moringa peregrina (Forssk.) Fiori. on blood pressure and oxidative status in dexamethasone-induced hypertensive rats. Adv. Biomed. Res. 2015; 4: 1–11. doi: 10.4103/2277-9175.156681
29. Saini, R. K., Shetty, N. P., and Giridhar, P. Carotenoid content in vegetative and reproductive parts of commercially grown Moringa oleifera Lam. cultivars from India by LC–APCI–MS. Eur. Food Res. Technol. 2014; 238: 971–978. doi: 10.1007/s00217-014-2174-3
30. Abd Rani NZ, Husain K, and Kumolosasi E. Moringa Genus: A Review of Phytochemistry and Pharmacology. Front. Pharmacol. 2018; 9:108. doi:10.3389/fphar.2018.00108
31. Vlachodimitropoulou E, Naftalin RJ, Sharp PA. Quercetin is a substrate for the transmembrane oxidoreductase Dcytb. Free Radic Biol Med. 2010; 48:1366e9
32. Baccan MM, Chiarelli-Neto O, Pereira RMS, Esposito BP. Quercetin as a shuttle for labile iron. J Inorg Biochem. 2012; 107: 34e9
33. Vlachodimitropoulou E, Sharp PA, Naftalin, RJ. Quercetin–iron chelates are transported via glucose transporters. Free Radical Biology and Medicine. 2011; 50: 934–944
34. Hambal M, Frengki F, Sari WE, Vanda H. In silico prediction of flavan-3-ol as a bioactive compound of Calophyllum macrophyllum as a potential drug against angiostrongylus eosinophilic meningitis. Veterinary World. 2022; 15(5): 1305-1313
35. Kitchen, D. B, Decornez H, Furr J. R and Bajorath J. Docking and scoring virtual screening for drug discovery: methods and applications. Nature reviews. Drug discovery. 2004; 3(11): 935-49
36. Ganasen M, Togashi H, Takeda H, Asakura H, Tosha T, Yamashita K, Hirata K, Nariai Y, Urano T, et al. Structural basis for the promotion of duodenal iron absorption by enteric ferric reductase with ascorbate. Communications Biology, 2018; 1:120. doi: 10.1038/s42003-018-0121-8
37. Pandey B, Grover A, Sharma P. Molecular dynamics simulations revealed structural differences among WRKY domain-DNA interaction in barley (Hordeum vulgare). BMC Genomics. 2018; 19(132): 1-16. https://doi.org/10.1186/s12864-018-4506-3
38. Rutzke CJ, Glahn RP, Rutzke MA, Welch RM, Langhans RW, Albright LD, Combs GF, Wheeler RM. Bioavailability of Iron from Spinach Using an in Vitro/Human Caco-2 Cell Bioassay Model. Habitation (Elmsford). 2004; 10 (1): 7–14. doi 10.3727/154296604774808900.
39. Khoja KK, Aslam MF, Sharp PA, Latunde-Dada GO. In Vitro Bioaccessibility and Bioavailability of Iron from Fenugreek, Baobab, and Moringa. Food Chem. 2021; 15(335): 127671. doi: 10.1016/j.foodchem.2020.127671
40. He W, Li X, Ding K, Li Y, Li W. Ascorbic Acid Can Reverse the Inhibition of Phytic Acid, Sodium Oxalate, and Sodium Silicate on Iron Absorption in Caco-2 Cells. Int. J. Vitam. Nutr. Res. 2018; 88(1–2): 65–72. doi 10.1024/0300-9831/a000503.
41. Villaño D, Vilaplana C, Medina S, Algaba-Chueca F, Cejuela-Anta R, Miguel Martínez-Sanz J, Ferreres F, Gil-Izquierdo A, Mcphee DJ, Mena P. Relationship between the Ingestion of a Polyphenol-Rich Drink, Hepcidin Hormone, and Long-Term Training. Molecules. 2016; 21(10): 1333. doi: 10.3390/molecules21101333
42. Cook JD. Reddy MB. Effect of Ascorbic Acid Intake on Nonheme-Iron Absorption from a Complete Diet. Am. J. Clin. Nutr. 2001; 73(1): 93– 98, doi: 10.1093/ajcn/73.1.93
43. Lee J., Mitchell A.E. Pharmacokinetics of Quercetin Absorption from Apples and Onions in Healthy Humans. J. Agric. Food Chem. 2012; 60: 3874–3881. doi: 10.1021/jf3001857.
44. Walle T, Otake Y, Walle UK, Wilson FA. Quercetin glucosides are completely hydrolyzed in ileostomy patients before absorption. J. Nutr. 2000; 130: 2658–2661. doi: 10.1093/jn/130.11.2658.
45. Wolffram S, Blöck M, Ader P. Quercetin-3-glucoside is transported by the glucose carrier SGLT1 across the brush border membrane of the rat small intestine. J. Nutr. 2002; 132: 630–635. doi: 10.1093/jn/132.4.630
46. Day AJ, Gee JM, DuPont MS, Johnson IT, Williamson G. Absorption of quercetin-3-glucoside and quercetin-4′-glucoside in the rat small intestine: The role of lactase phlorizin hydrolase and the sodium-dependent glucose transporter. Biochem. Pharmacol. 2003; 65: 1199–1206. doi: 10.1016/S0006-2952(03)00039-X.
47. Pires, D. E. V., Blundell, T. L., and Ascher, D. B. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. Journal of Medicinal Chemistry. 2015; 58(9): 4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104
48. Hart JJ, Tako E, Glahn RP Characterization of Polyphenol Effects on Inhibition and Promotion of Iron Uptake by Caco-2 Cells. J. Agric. Food Chem. 2017; 65(16): 3285−3294. (93).
49. Hart JJ, Tako E, Kochian LV, Glahn RP. Identification of Black Bean (Phaseolus Vulgaris L.) Polyphenols That Inhibit and Promote Iron Uptake by Caco-2 Cells. J. Agric. Food Chem. 2015; 63(25): 5950−5956
50. Ma Q, Kim EY, Lindsay EA, Han O. Bioactive Dietary Polyphenols Inhibit Heme Iron Absorption in a Dose-Dependent Manner in Human Intestinal Caco-2 Cells. J. Food Sci. 2011; 76 (5): H143−H150
51. Petry N, Egli I, Zeder C, Walczyk T, Hurrell R. The Journal of Nutrition Nutrient Physiology, Metabolism, and NutrientNutrient Interactions Polyphenols and Phytic Acid Contribute to the Low Iron Bioavailability from Common Beans in Young Women 1, 2. J. Nutr. 2010; 140: 1977−1982
52. Bailey ADL, Fulgoni Iii VL, Shah N, Patterson AC, Gutierrez-Orozco F, Mathews RS, Walsh KR. Nutrient Intake Adequacy from Food and Beverage Intake of US Children Aged 1–6 Years from NHANES 2001–2016. Nutrients. 2021; 13: 827
53. Chih-Chung W, Wei-Lin C, Chih-Huei L, Yueh-Ping C, Jyh-Jye W, Shu-Ling H. Effects of extracts from Gynura bicolor (Roxb. and Willd.) DC. on iron bioavailability in rats. Journal of food and drug analysis. 2015; 23: 425 e432
54. Marimuthu C, Murugan JG, Sukumar S, Rajendran P. Effects on Oral Supplementation of Nutraceuticals formulations - Trichovitals® in young adults for healthy maintenance of hair growth. Research Journal of Topical and Cosmetic Sciences. 2022; 13(1): 1-8.
55. Sejwani S, Dhote V, Chaturvedi P. Development of novel formulations from natural and synthetic origin drugs for effective management of inflammation. Research J. Topical and Cosmetic Sci. 2020; 11(2): 70-76
56. Arivukkarasu R, and Rajasekaran A. Detection of Flavonoids, Phenolic Acids and Xanthones in Commercial Herbal Formulations by HPTLC Technique. Res. J. Pharmacognosy and Phytochem. 2015; 7(1): 13-27.