Author(s):
Ira Arundina, Aqsa Sjuhada Oki, Theresia Indah Budhy, Azzahra Salsabila Adira Moelyanto, Sheryn Marcha Ramaniasari, Ekarista Lussiana Ferdinandus, Ahmad Afif Dzulfikar, Irfan Prasetyo, Arvia Diva Firstiana, Tytania Rahmaputry, Arya Pradana
Email(s):
arundinaira@gmail.com
DOI:
10.52711/0974-360X.2024.00070
Address:
Ira Arundina1*, Aqsa Sjuhada Oki1, Theresia Indah Budhy2, Azzahra Salsabila Adira Moelyanto3, Sheryn Marcha Ramaniasari3, Ekarista Lussiana Ferdinandus4, Ahmad Afif Dzulfikar4, Irfan Prasetyo4, Arvia Diva Firstiana4, Tytania Rahmaputry5, Arya Pradana5
1Department of Oral Biology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia.
2Department of Oral Pathology and Maxillofacial, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia.
3Master Student of Dental Health Science, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia.
4Student of Conservative Dentistry Specialist of Dental Medicine, Faculty of Dental Medicine,
Universitas Airlangga, Surabaya, Indonesia.
5Undergraduate Student, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia.
*Corresponding Author
Published In:
Volume - 17,
Issue - 1,
Year - 2024
ABSTRACT:
SARS-CoV-2 causes COVID-19 (Corona Virus Infection Disease-19), an infectious disease (Severe Acute Respiratory Syndrome Corona Virus-2)virus which was first confirmed on December 2, Wuhan, China, in 2019 and very quickly world-wide. World Health Organization (WHO) declared it on March 11th, 2020,fever, cough, and breathing difficulties are all common symptoms. The gold standard for diagnosing SARS-CoV-2 infection is the real-time reverse transcription polymerase chain reaction (rRT-PCR)by detecting viral RNA using nasopharyngeal swabs and other respiratory specimens. However, this process necessitates the use of specialist medical staff, centralized laboratory facilities, and a lengthy period of time for results to be obtained. Besides that, the possibility of virus transmission is not negligiblefor procedure's operator. Due to this reason, several investigations have shown that other bodily fluids, like as saliva, could be used to identify SARS-CoV-2. Saliva is used as a diagnostic sample has many advantages: it is easy to collect samples by the patient themselves with a fairly comfortable procedure, does not require health personnel with special expertise to manage it, and reduces the risk of transmitting the virus to the operator. Currently, there are several alternative tests for SARS-CoV-2 which have simpler and more efficient procedures, such as antigen based rapid diagnostic tests, antibody based rapid diagnostics, and RT LAMP tests. This examination is suitable for screening and mass examination, but cannot be used as a primary diagnostic tool because the sensitivity and specificity are not as high as rRT-PCR.
Cite this article:
Ira Arundina, Aqsa Sjuhada Oki, Theresia Indah Budhy, Azzahra Salsabila Adira Moelyanto, Sheryn Marcha Ramaniasari, Ekarista Lussiana Ferdinandus, Ahmad Afif Dzulfikar, Irfan Prasetyo, Arvia Diva Firstiana, Tytania Rahmaputry, Arya Pradana. The Role of Saliva in Examining for SARS-CoV-2. Research Journal of Pharmacy and Technology. 2024; 17(1):443-1. doi: 10.52711/0974-360X.2024.00070
Cite(Electronic):
Ira Arundina, Aqsa Sjuhada Oki, Theresia Indah Budhy, Azzahra Salsabila Adira Moelyanto, Sheryn Marcha Ramaniasari, Ekarista Lussiana Ferdinandus, Ahmad Afif Dzulfikar, Irfan Prasetyo, Arvia Diva Firstiana, Tytania Rahmaputry, Arya Pradana. The Role of Saliva in Examining for SARS-CoV-2. Research Journal of Pharmacy and Technology. 2024; 17(1):443-1. doi: 10.52711/0974-360X.2024.00070 Available on: https://rjptonline.org/AbstractView.aspx?PID=2024-17-1-70
REFERENCES:
1. Levani Y, Prastya AD, Mawaddatunnadila S. Coronavirus Disease 2019 (COVID-19): Patogenesis, Manifestasi Klinis dan Pilihan Terapi. Jurnal Kedokteran dan Kesehatan. 2021; 17: 44–57. doi.org/10.24853/jkk.17.1.44-57
2. Wu Y-C, Chen C-S, Chan Y-J. The outbreak of COVID-19: An overview. Journal of the Chinese Medical Association 2020; 83: 217–220. doi.org/10.1097/JCMA.0000000000000270
3. Pinki, Rani D, Bajaj H, Singh R. SARS-COV-2 (COVID-19) and role of real time Reverse Transcription Polymerase Chain Reaction (RT-PCR) in its diagnosis. Research Journal of Pharmacy and Technology. 2021; 14: 3437–3440. doi.org/10.52711/0974-360X.2021.00598
4. Sucahya PK. Barriers to Covid-19 RT-PCR Testing in Indonesia: A Health Policy Perspective. Journal of Indonesian Health Policy and Administration. 2020; 5. doi.org/10.7454/ihpa.v5i2.3888
5. Salvamani S, Tan HZ, Thang WJ, et al. Understanding the dynamics of COVID-19; implications for therapeutic intervention, vaccine development and movement control. Br J Biomed Sci 2020; 77: 168–184.doi.org/10.1080/09674845.2020.1826136
6. Azzi L, Maurino V, Baj A, et al. Diagnostic Salivary Tests for SARS-CoV-2. J Dent Res. 2021; 100: 115–123. doi.org/10.1177/0022034520969670
7. Differential Analysis and Putative Roles of Genes, Cytokines and Apoptotic Proteins in Blood Samples of Patients with Respiratory Viral Infections: A Single Center Study. Journal of Pure and Applied Microbiology. 2021
8. Kumar V, Kancharla S, Jena MK. In silico screening of FDA approved drugs predicts the therapeutic potentials of Antibiotic drugs against the papain like protease of SARS-CoV-2. Research Journal of Pharmacy and Technology. 2021; 14: 4035–4039. doi.org/10.52711/0974-360X.2021.00699
9. Padmaharish V. Salivary Biomarkers of Oral Cancer – A Review. Research Journal of Pharmacy and Technology. 2016; 9: 1007–1012. doi.org/10.5958/0974-360X.2016.00190.6
10. Park H-R. Effect of Salivary Streptococci mutans and Lactobacilli levels after uptake of the Probiotic for Clinical Trial. Research Journal of Pharmacy and Technology. 2017; 10: 2984–2988. doi.org/10.5958/0974-360X.2017.00528.5
11. Harsha NS, Rivas-Santisteban J, Satish RT, Kumar GS. Analysis of the Evolutionary pattern of SARS-CoV-2 and its implications in the spread of the disease. Research Journal of Pharmacy and Technology. 2021; 14: 2229–2232. doi.org/10.52711/0974-360X.2021.00396
12. Ansori ANM, Kharisma VD, Fadholly A, Tacharina MR, Antonius Y, Parikesit AA. Severe Acute Respiratory Syndrome Coronavirus-2 Emergence and Its Treatment with Alternative Medicines: A Review. Research Journal of Pharmacy and Technology. 2021; 14: 5551–5557. doi.org/10.52711/0974-360X.2021.00967
13. Kandula UR, Veerabhadrappa KV, Goruntla N, et al. Knowledge, Concept on severe Acute Respiratory Syndrome Coronavirus-2(SARS-CoV-2). A Review of the Literature and Future perspective. Research Journal of Pharmacy and Technology. 2023; 16: 441–446. doi.org/10.52711/0974-360X.2023.00075
14. Yuliana Y. Corona virus diseases (Covid-19): Sebuah tinjauan literatur. Wellness And Healthy Magazine. 2020; 2: 187–192. doi.org/10.30604/well.95212020
15. Sapkota D, Søland TM, Galtung HK, et al. COVID-19 salivary signature: diagnostic and research opportunities. J Clin Pathol 2020:jclinpath-2020-206834.doi.org/10.1136/jclinpath-2020-206834
16. Anam K, Prabowo B, Kusuma MT, et al. Multi Epitopes Potential on Surface SARS-CoV-2 Protein as a Covid-19 Vaccine Candidate. Research Journal of Pharmacy and Technology. 2022; 15: 1437–1442. doi.org/10.52711/0974-360X.2022.00238
17. Handayani D, Hadi DR, Isbaniah F, Burhan E, Agustin H. Corona Virus Disease 2019. Jurnal Respirologi Indonesia. 2020; 40: 119–129. doi.org/10.36497/jri.v40i2.101
18. E N, Savitha G. A study of Salivary Lactate Dehydragenase (LDH) level in normal individuals and the Oral Cancer Patients. Research Journal of Pharmacy and Technology. 2015; 8:.932–934. doi.org/10.5958/0974-360X.2015.00155.9
19. Varadhachary A, Chatterjee D, Garza J, et al. Salivary anti-SARS-CoV-2 IgA as an accessible biomarker of mucosal immunity against COVID-19. medRxiv 2020: 2020.08.07.20170258.doi.org/10.1101/2020.08.07.20170258
20. Agarwal R, T L. Salivary Enzymes as Biomarkers for Periodontitis – An Update. Research Journal of Pharmacy and Technology. 2014; 7: 98–100.
21. Burhan E, Susanto AD, Nasution SA, et al. Perhimpunan Dokter Paru Indonesia (PDPI) Perhimpunan Dokter Spesialis Kardiovaskular Indonesia (PERKI) Perhimpunan Dokter Spesialis Penyakit Dalam Indonesia (PAPDI) Perhimpunan Dokter Anestesiologi dan Terapi Intensif Indonesia (PERDATIN) Ikatan Dokter Anak Indonesia (IDAI). 149.
22. Jain MR, Gheena .S, P G. Comparison of Aerobic Bacteria in Saliva Samples of Chronic and Aggressive Periodontitis Patients- An in Vitro Study. Research Journal of Pharmacy and Technology 2016; 9: 1183–1186.doi.org/10.5958/0974-360X.2016.00226.2
23. World Health Organization (WHO). Diagnostic Testing for SARS Cov-2: Interim Guidance. 2020
24. Brijesh K, Gadhvi V, Gupta A, Roopchandani K, Patel N. A Review: Production of Monoclonal Antibody. Research Journal of Pharmacy and Technology. 2013; 6: 701–705.
25. PDS P. Panduan Tatalaksana Pemeriksaan Antigen. 2020: 1–101.
26. World Health Organization (WHO). Antigen-detection in the diagnosis of SARS-CoV-2 infection. 2021
27. Fábián TK, Hermann P, Beck A, Fejérdy P, Fábián G. Salivary Defense Proteins: Their Network and Role in Innate and Acquired Oral Immunity. Int J Mol Sci. 2012; 13: 4295–4320. doi.org/10.3390/ijms13044295
28. Mestecky J, Russell M, Elson C. Intestinal IgA: Novel views on its function in the defence of the largest mucosal surface. Gut 1999; 44: 2–5. doi.org/10.1136/gut.44.1.2
29. Wilton M. A comparative study of circulating and cell-mediated immunity induced by the gingival and systemic administration of oral bacteria. J dent Res Suppl. 1969; 48
30. Quiding-Järbrink M, Nordström I, Granström G, et al. Differential expression of tissue-specific adhesion molecules on human circulating antibody-forming cells after systemic, enteric, and nasal immunizations. A molecular basis for the compartmentalization of effector B cell responses. J Clin Invest 1997; 99: 1281–1286.doi.org/10.1172/JCI119286
31. Quan CP, Berneman A, Pires R, Avrameas S, Bouvet JP. Natural polyreactive secretory immunoglobulin A autoantibodies as a possible barrier to infection in humans. Infect Immun. 1997; 65: 3997–4004.
32. Yokota I, Shane PY, Okada K, et al. Mass Screening of Asymptomatic Persons for Severe Acute Respiratory Syndrome Coronavirus 2 Using Saliva. Clin Infect Dis. 2021; 73: e559–e565. doi.org/10.1093/cid/ciaa1388
33. Liu R, Han H, Liu F, et al. Positive rate of RT-PCR detection of SARS-CoV-2 infection in 4880 cases from one hospital in Wuhan, China, from Jan to Feb 2020. Clin Chim Acta. 2020; 505: 172–175. doi.org/10.1016/j.cca.2020.03.009
34. Pang J, Wang MX, Ang IYH, et al. Potential Rapid Diagnostics, Vaccine and Therapeutics for 2019 Novel Coronavirus (2019-nCoV): A Systematic Review. Journal of Clinical Medicine. 2020; 9: 623. doi.org/10.3390/jcm9030623
35. Malamud D, Rodriguez-Chavez IR. Saliva as a Diagnostic Fluid. Dent Clin North Am. 2011; 55: 159–178. doi.org/10.1016/j.cden.2010.08.004
36. Hung K-F, Sun Y-C, Chen B-H, et al. New COVID-19 saliva-based test: How good is it compared with the current nasopharyngeal or throat swab test? J Chin Med Assoc. 2020; 83: 891–894. doi.org/10.1097/JCMA.0000000000000396
37. Nagura-Ikeda M, Imai K, Tabata S, et al. Clinical Evaluation of Self-Collected Saliva by Quantitative Reverse Transcription-PCR (RT-qPCR), Direct RT-qPCR, Reverse Transcription-Loop-Mediated Isothermal Amplification, and a Rapid Antigen Test To Diagnose COVID-19. J Clin Microbiol. 2020; 58: e01438-20. doi.org/10.1128/JCM.01438-20
38. Bikos DA, Hwang C, Brileya KA, et al. SLAMP: A Rapid Fluorometric RT-LAMP Assay for Sensitive and Specific Detection of SARS-CoV-2 from Human Saliva. 2021. doi.org/10.1101/2021.03.31.21254634
39. L’Helgouach N, Champigneux P, Schneider FS, et al. EasyCOV : LAMP Based Rapid Detection of SARS-CoV-2 in Saliva. 2020: 2020.05.30.20117291.doi.org/10.1101/2020.05.30.20117291
40. Basso D, Aita A, Padoan A, et al. Salivary SARS-CoV-2 antigen rapid detection: A prospective cohort study. Clin Chim Acta. 2021; 517: 54–59. doi.org/10.1016/j.cca.2021.02.014
41. Kapoor P, Chowdhry A, Kharbanda OP, Bablani Popli D, Gautam K, Saini V. Exploring salivary diagnostics in COVID-19: a scoping review and research suggestions. BDJ Open. 2021; 7:1–10. doi.org/10.1038/s41405-021-00064-7
42. MacMullan MA, Ibrayeva A, Trettner K, et al. ELISA detection of SARS-CoV-2 antibodies in saliva. Sci Rep. 2020; 10: 20818. doi.org/10.1038/s41598-020-77555-4
43. Faustini SE, Jossi SE, Perez-Toledo M, et al. Detection of antibodies to the SARS-CoV-2 spike glycoprotein in both serum and saliva enhances detection of infection. medRxiv. 2020:2020.06.16.20133025.doi.org/10.1101/2020.06.16.20133025
44. Pisanic N, Randad PR, Kruczynski K, et al. COVID-19 Serology at Population Scale: SARS-CoV-2-Specific Antibody Responses in Saliva. J Clin Microbiol. 2020; 59: e02204-20. doi.org/10.1128/JCM.02204-20
45. Hettegger P, Huber J, Paßecker K, et al. High similarity of IgG antibody profiles in blood and saliva opens opportunities for saliva based serology. PLoS One. 2019; 14: e0218456. doi.org/10.1371/journal.pone.0218456
46. Isho B, Abe KT, Zuo M, et al. Persistence of serum and saliva antibody responses to SARS-CoV-2 spike antigens in COVID-19 patients. Sci Immunol. 2020; 5: eabe5511. doi.org/10.1126/sciimmunol.abe5511
47. Yu H, Sun B, Fang Z, et al. Distinct features of SARS-CoV-2-specific IgA response in COVID-19 patients. Eur Respir J. 2020; 56: 2001526. doi.org/10.1183/13993003.01526-2020