Author(s): Simerjeet Kaur Chahal, Atul Kabra, Rupinder Kaur Sodhi

Email(s): atul.e9963@cumail.in

DOI: 10.52711/0974-360X.2024.00069   

Address: Simerjeet Kaur Chahal1, Atul Kabra1*, Rupinder Kaur Sodhi2
1University Institute of Pharmaceutical Sciences, Chandigarh University, Gharuan, Mohali - 140413, Punjab, India.
2Department of Pharmacology, Chandigarh College of Pharmacy, Mohali (Punjab) India.
*Corresponding Author

Published In:   Volume - 17,      Issue - 1,     Year - 2024


ABSTRACT:
Polycystic ovary syndrome (PCOS) is an alarming gynaecological endocrine disorder affects women of reproductive age. Hyperandrogenism contributes for a cluster of cardio-metabolic risk factors characterized by reproductive dysfunction, polycystic ovaries, anovulation, and cosmetic dysfunctions. Although during the past decades, substantial research efforts tried to uncover the exact aetiology and pathogenesis of PCOS but owing to the complex etiology, the patho-physiological mechanisms of PCOS remains in doubt. To develop potential and highly efficient therapeutic strategies, there are many proteins which can act as potential biomarkers for PCOS. These biomarker proteins and enzymes may involve in the early detection and handling of this condition and mitigate the risk of long-term problems.


Cite this article:
Simerjeet Kaur Chahal, Atul Kabra, Rupinder Kaur Sodhi. Novel biomarkers in Polycystic Ovary Syndrome. Research Journal of Pharmacy and Technology. 2024; 17(1):439-2. doi: 10.52711/0974-360X.2024.00069

Cite(Electronic):
Simerjeet Kaur Chahal, Atul Kabra, Rupinder Kaur Sodhi. Novel biomarkers in Polycystic Ovary Syndrome. Research Journal of Pharmacy and Technology. 2024; 17(1):439-2. doi: 10.52711/0974-360X.2024.00069   Available on: https://rjptonline.org/AbstractView.aspx?PID=2024-17-1-69


REFERENCES:
1.    Tabrizi FPF, Hajizadeh-Sharafabad F, Vaezi M., Jafari-Vayghan H, Alizadeh M and Maleki V. Quercetin and polycystic ovary syndrome,current evidence and future directions: asystematic review. J Ovarian Res. 2020; 13:11.
2.    Lizneva D, Suturina L, Walker W, Brakta S, Gavrilova-Jordan L, Azziz R. Criteria, prevalence, and phenotypes of polycystic ovary syndrome. Fertil Steril. 2016; 106(1):6-15. doi: 10.1016/j.fertnstert.2016.05.003.
3.    Carvalho LML, Ferreira CN, Soter MO, Sales MF, Rodrigues KF, Martins SR, et al. Microparticles: Inflammatory and haemostatic biomarkers in Polycystic Ovary Syndrome. Mol Cell Endocrinol. 2017a; 443:155-162.
4.    Hayes MG, Urbanek M, Ehrmann DA, Armstrong LL, Lee JY, Sisk R, Karaderi T, et al. Reproductive Medicine Network. Genome-wide association of polycystic ovary syndrome implicates alterations in gonadotropin secretion in European ancestry populations. Nat Commun. 2015; 6(1):7502.
5.    Hao CF, Zhang N, Qu Q, Wang X, Gu HF, Chen ZJ.Evaluation of the association between the CYP19 Tetranucleotide (TTTA) n polymorphism and polycystic ovarian syndrome (PCOS) in Han Chinese women.Neuro Endocrinol. Lett. 31 (3) (2010), 370-374.
6.    Glintborg D and Andersen M. Management of endocrine disease: morbidity in polycystic ovary syndrome. Eur J Endocrinol. 2017; 176:R53-R65.
7.    Rosenfield RL, Ehrmann DA. The pathogenesis of Polycystic Ovary Syndrome (PCOS): The hypothesis of PCOS as functional ovarian hyperandrogenism revisited. Endocr Rev. 2016; 37:467-520
8.    Diamanti-Kandarakis E and Dunaif A. Insulin resistance and the polycystic ovary syndrome revisited: an update on mechanisms and implications, Endocr Rev. 2012; 33(6):981-1030 DOI: 10.1210/er.2011-1034.
9.    Magoffin DA. Ovarian theca cell. Int J Biochem Cell Biol. 2005; 37:1344-1349.
10.    Su YX, Du GL, Shen HL, Wang W, Bao JL, Aierken A, Wang BW, Jiang S, Zhu J, Gao XM. Increased expression of aromatase cytochrome P450 enzyme is associated with prolactinoma invasiveness in post-menopausal women. Journal of International Medical Research. 2019; 47(7):3115-26.
11.    Morris BJ. Seven sirtuins for seven deadly diseases of aging. Free Radic. Biol. Med. 2013; 56:133-171.
12.    Tanno M, Sakamoto J, Miura T, Shimamoto K, Horio Y. Nucleocytoplasmic shuttling of the NAD+-dependent histone deacetylase SIRT1. J. Biol. Chem. 2007; 282:6823- 6832.
13.    Zhao F, Zhao W, Ren S, Fu Y, Fang X, Wang X, Li B. Roles of SIRT1 in granulosa cell apoptosis during the process of follicular atresia in porcine ovary. Anim. Reprod. Sci. 2014; 151:34-41.
14.    Gonzalez-Fernandez R, Martin-Ramirez R, Rotoli D et al. Granulosa-Lutein Cell Sirtuin Gene Expression Profiles Differ between Normal Donors and Infertile Women. Int J Mol Sci. 2019; 21(1):295.
15.    Ajmal N, Khan SZ, Shaikh R. Polycystic ovary syndrome (PCOS) and genetic predisposition: A review article. European Journal of Obstetrics &Gynecology and Reproductive Biology: X. 2019; 3:10006. doi: 10.1016/j.eurox.2019.100060.
16.    Urbanek M. The genetics of the polycystic ovary syndrome. Endocrinol Metab. 2007; 3(2): 103-111. doi:10.1038/ncpendmet0400.
17.    Volkel P, Le Faou P, Vandamme J, Pira D, Angrand PO. A human Polycomb isoform lacking the Pc box does not participate to PRC1 complexes but forms protein assemblies and represses transcription. Epigenetics. 2012; 7:482-491. doi.org/10.4161/ epi.19741.
18.    Hu S, Rao M, Lei H, Wu Y, Wang Y, Ke D, Xia W, Zhu C. Expression patterns of p38αMAPK during follicular development in the ovaries of neonatal rats. Acta Histochemica. 2017 Jun 1;119(5):538-42.
19.    Marti N, Galvan JA, Pandey AV, Trippel M, Tapia C, Muller M, Perren A, Fluck CE. Genes and proteins of the alternative steroid backdoor pathway for dihydrotestosterone synthesis are expressed in the human ovary and seem enhanced in the polycystic ovary syndrome. Molecular and Cellular Endocrinology. 2017; 441:116-23.
20.    Del Valle I, Buonocore F, Duncan AJ, Lin L, Barenco M, Parnaik R, Shah S, Hubank M, Gerrelli D, Achermann JC. A genomic atlas of human adrenal and gonad development. Wellcome Open Research. 2017;2.
21.    Biason-Lauber A, Bouazzi L, Sproll P, Eid W. The transcriptional regulator CBX2 and ovarian function: A whole genome and whole transcriptome approach. Scientific Reports. 2019; 9:17033.
22.    Kokosar M, Benrick A, Perfilyev A, Fornes R, Nilsson E, Maliqueo M, Behre CJ, Sazonova A, Ohlsson C, Ling C, Stener-Victorin E. Epigenetic and transcriptional alterations in human adipose tissue of polycystic ovary syndrome. Scientific Reports. 2016; 6:22883. DOI: 10.1038/srep22883.
23.    Wu HL, Heneidi S, Chuang TY, Diaond MP, Layman LC, Azziz R, Chen YH: The expression of the miR-25/93/106b family of microRNAs in the adipose tissue of women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2014; 99:E2754-E2761.
24.    Song J, Luo S, Li SW. miRNA-592 is downregulated and may target LHCGR in polycystic ovary syndrome patients. Reprod Biol. 2015; 15:229-237.
25.    Tee MK, Speek M, Legeza B, Modi B, Teves ME, McAllister JM, Strauss JFIII, Miller WL. Alternative splicing of DENND1A, a PCOS candidate gene, generates variant- 2. Mol Cell Endocrinol. 2016; 434:25-35.
26.    Osuka S, Iwase A, Nakahara T, Kondo M, Saito A, Bayasula, Nakamura T, Takikawa S, Goto M, Kotani T, Kikkawa F. Kisspeptin in the hypothalamus of 2 rat models of polycystic ovary syndrome. Endocrinology. 2017; 158(2):367-377. doi: 10.1210/en.2016-1333.
27.    Hu KL, Zhao H, Chang HM, Yu Y, Qiao J. Kisspeptin/ Kisspeptin Receptor System in the Ovary. Front. Endocrinol. 2018; 8:365–365.doi.org/10.3389/fendo.2017.00365.
28.    Katulski K, Podfigurna A, Czyzyk A, Meczekalski B, Genazzani AD. Kisspeptin and LH pulsatile temporal coupling in PCOS patients. Endocrine. 2018; 61(1):149–157.
29.    Topaloglu AK, Tello JA, Kotan LD, Ozbek MN, Yilmaz MB, Erdogan S, Gurbuz F, Temiz F, Millar RP, Yuksel B. Inactivating KISS1 mutation and hypogonadotropic hypogonadism. New England Journal of Medicine. 2012; 16;366(7):629-35.
30.    Navarro VM, Tena-Sempere M: Neuroendocrine control by kisspeptins: role in metabolic regulation of fertility. Nat Rev Endocrinol. 2012; 8:40-53.
31.    Brown RE, Wilkinson DA, Imran SA, Caraty A, Wilkinson M: Hypothalamic kiss1 mRNA and kisspeptin immunoreactivity are reduced in a rat model of polycystic ovary syndrome (PCOS). Brain Res. 2012; 1467:1–9.
32.    Sujana C, Huth C, Zierer A, et al.: Association of fetuin-A with incident type 2 diabetes: results from the MONICA/KORA Augsburg study and a systematic meta-analysis. Eur J Endocrinol. 2018, 178:389-98. 10.1530/EJE-17-1053
33.    Yang D, Li N, Ma A, et al.: Identification of potential biomarkers of polycystic ovary syndrome via integrated bioinformatics analysis. Reprod Sci. 2021, 28:1353-61. 10.1007/s43032-020-00352-x
34.    Webling KE, Runesson J, Bartfai T, Langel U. Galanin receptors and ligands. Front Edocrinol. 2012; 3:146.
35.    Mensah ET, Blanco AM, Donini A, Unniappan S. Galanin decreases spontaneous resting contractions and potentiates acetyl choline-induced contractions of goldfish gut. Neuropeptides. 2018; 69:92-97.
36.    Li Y, Hokfelt T, Xu ZD. Galanin protects brain from ischemic injury of mice following ischemic stroke via inhibition of Caspase-3-dependent apoptosis. Neuropeptides. 2017; 65:139.
37.    Waters SM, Krause JE. Distribution of galanin-1, -2 and -3 receptor messenger RNAs in central and peripheral rat tissues. Neuroscience.  2000; 95:265-271.
38.    Fang P, He B, Shi M, Kong G, Dong X, Zhu Y, Bo P, Zhang Z. The regulative effect of galanin family members on link of energy metabolism and reproduction. Peptides. 2015; 71:240-249.
39.    Roland AV, Moenter SM. Reproductive neuroendocrine dysfunction in polycystic ovary syndrome: Insight from animal models. Front Neuroendocrinol, 2014; 35(4): 494- 511.
40.    Schofl C, Horn R, Schill T, Schlosser HW, Muller MJ, Brabant G. Circulating ghrelin levels in patients with polycystic ovary syndrome. The Journal of Clinical Endocrinology and Metabolism. 2002; 87(10):4607-10.
41.    Ilhan GA and Yildizhan B. Podocalyxin a new biomarker in polycystic ovary syndrome. Fertility and Sterlity. 2018; 110 (4): E117-E118.
42.    Yang D, Li N, Ma A, et al.: Identification of potential biomarkers of polycystic ovary syndrome via integrated bioinformatics analysis. Reprod Sci. 2021, 28:1353-61. 10.1007/s43032-020-00352-x
43.    Dursun P, Demirtas E, Bayrak A, Yarali H: Decreased serum paraoxonase 1 (PON1) activity: an additional risk factor for atherosclerotic heart disease in patients with PCOS?. Hum Reprod. 2006, 21:104-8. 10.1093/humrep/dei284
44.    Bin Ali A, Zhang Q, Lim YK, Fang D, Retnam L, Lim SK: Expression of major HDL-associated antioxidant PON-1 is gender dependent and regulated during inflammation. Free Radic. Biol. Med. 2003, 34:824-9. 10.1016/s0891-5849(02)01436-3

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags


Not Available