Author(s): Mansi L. Patil, Swati S. Gaikwad, Harshad S. Kapare

Email(s): swati.gaikwad05@gmail.com

DOI: 10.52711/0974-360X.2024.00067   

Address: Mansi L. Patil1*, Swati S. Gaikwad2, Harshad S. Kapare3
1Department of Pharmaceutical Chemistry, Dr. D.Y. Patil Institute of Pharmaceutical Science and Research, Pimpri – Pune - 411018, India.
2Department of Pharmaceutics, Nagpur College of Pharmacy, Wanadongri, Hingna Road, Nagpur – 441110.
3Department of Pharmaceutics, Dr. D.Y. Patil Institute of Pharmaceutical Science and Research, Pimpri – Pune - 411018, India.
*Corresponding Author

Published In:   Volume - 17,      Issue - 1,     Year - 2024


ABSTRACT:
Antibiotics resistance is a global issue causing health threats which is further causing mortality. Several attempts have been reported to overcome these issues. Despite of this, there are several limitations associated with conventional approaches. Nanofiber technique is an exciting area which has attracted many researchers due to its biomedical applicability such as in tissue engineering, drug delivery, and water purification. Antibiotics encapsulation inside the nanofibres gives the ability to destroy drug-resistant bacteria, additionally its large surface area allows for adhesion of cells as well as drugs. The present review focuses on the potential therapeutic applications of nanofibre technology in antimicrobial drug delivery.


Cite this article:
Mansi L. Patil, Swati S. Gaikwad, Harshad S. Kapare. A Systematic Review on Antimicrobial Applications of Nanofibres. Research Journal of Pharmacy and Technology. 2024; 17(1):427-2. doi: 10.52711/0974-360X.2024.00067

Cite(Electronic):
Mansi L. Patil, Swati S. Gaikwad, Harshad S. Kapare. A Systematic Review on Antimicrobial Applications of Nanofibres. Research Journal of Pharmacy and Technology. 2024; 17(1):427-2. doi: 10.52711/0974-360X.2024.00067   Available on: https://rjptonline.org/AbstractView.aspx?PID=2024-17-1-67


REFERENCES:
1.    Hutchings MI, Truman AW, Wilkinson B. Antibiotics: past, present and future. Current opinion in microbiology. 2019 ;51:72-80.https://doi.org/10.1016/j.mib.2019.10.008
2.    Purohit MC, et.al. Antimicrobial Activity of Synthesized Zinc Oxide Nanoparticles using Ajugabracteosa Leaf Extract. Asian Journal of Pharmaceutical Analysis. 2021; 11(4): 275-0. doi: 10.52711/2231-5675.2021.00047
3.    Karthick, P. Kumaravel, P. Hemalatha, L. Thamaraiselvi. Mechanistic aspects: Biosynthesis of Silver nanoparticles from Proteus mirabilis and its antimicrobial study. Research J. Science and Tech 2013; 5(2): 235-238. https://rjstonline.com/AbstractView.aspx?PID=2013-5-2-1
4.    Ulubayram K, Calamak S, Shahbazi R, Eroglu I. Nanofibers based antibacterial drug design, delivery and applications. Current Pharmaceutical Design. 2015 ; 21(15): 1930-43. DOI: 10.2174/1381612821666150302151804
5.    Hamdan N, Yamin A, Hamid SA, Khodir WK, Guarino V. Functionalized antimicrobial nanofibers: Design criteria and recent advances. Journal of Functional Biomaterials. 2021 ; 12(4):59.DOI: 10.3390/jfb12040059
6.    Lou L, Subbiah S, Smith E, Kendall RJ, Ramkumar SS. Functional PVA/VB2/TiO2 nanofiber webs for controlled drug delivery. ACS Applied Bio Materials. 2019; 2(12): 5916-29. https://doi.org/10.1021/acsabm.9b00726
7.    Saha K, Butola BS, Joshi M. Drug‐loaded polyurethane/clay nanocompositenanofibers for topical drug‐delivery application. Journal of Applied Polymer Science. 2014 May 15;131(10).DOI: 10.1002/app.40230
8.    Bolgen, N.; Vargel, I.; Korkusuz, P.; Menceloglu, Y. Z.; Piskin, E. J. Biomed. Mater. Res. B Appl. Biomater. 2007, 81,530.https://doi.org/10.1002/jbm.b.30694
9.    Prabhakar  C, Bala Krishna K. A Review on Polymeric Nanoparticles. Research J. Pharm. and Tech. 2011; 4(4): 496-498.https://rjptonline.org/HTMLPaper.aspx?Journal=Research%20Journal%20of%20Pharmacy%20and%20Technology;PID=2011-4-4-12
10.    Kushwah P, Mandloi R, Pillai S, Birla N, Sen A. A Review on Role of Nanoparticles in Anticancer Drugs. Res. J. Pharmacognosy and Phytochem. 2020; 12(3): 168-173. https://doi.org/10.5958/0975-4385.2020.00028.X
11.    Huang ZM, He CL, Yang A, Zhang Y, Han XJ, Yin J, Wu Q. Encapsulating drugs in biodegradable ultrafine fibers through co‐axial electrospinning. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials. 2006; 77(1): 169-79. DOI: 10.1002/jbm.a.30564
12.    Kim K, Luu YK, Chang C, Fang D, Hsiao BS, Chu B, Hadjiargyrou M. Incorporation and controlled release of a hydrophilic antibiotic using poly (lactide-co-glycolide)-based electrospunnanofibrous scaffolds. Journal of controlled release. 2004; 98(1): 47-56.DOI: 10.1016/j.jconrel.2004.04.009
13.    Jalvandi J, White M, Gao Y, Truong YB, Padhye R, Kyratzis IL. Polyvinyl alcohol composite nanofibres containing conjugated levofloxacin-chitosan for controlled drug release. Materials Science and Engineering: C. 2017; 73: 440-6. DOI: 10.1016/j.msec.2016.12.112
14.    Kim TG, Lee DS, Park TG. Controlled protein release from electrospun biodegradable fiber mesh composed of poly (ɛ-caprolactone) and poly (ethylene oxide). International journal of pharmaceutics. 2007; 338(1-2): 276-83. DOI: 10.1016/j.ijpharm.2007.01.040
15.    Zhou FL, Gong RH. Manufacturing technologies of polymeric nanofibres and nanofibre yarns. Polymer International. 2008; 57(6): 837-45.DOI: 10.1002/pi.2521
16.    Giram PS, Shitole A, Nande SS, Sharma N, Garnaik B. Fast dissolving moxifloxacin hydrochloride antibiotic drug from electrospunEudragit L-100 nonwoven nanofibrous Mats. Materials Science and Engineering: C. 2018; 92: 526-39. DOI: 10.1016/j.msec.2018.06.031
17.    Rade PP, Giram PS, Shitole AA, Sharma N, Garnaik B. Physicochemical and in Vitro Antibacterial Evaluation of Metronidazole Loaded Eudragit S-100 Nanofibrous Mats for the Intestinal Drug Delivery. Advanced Fiber Materials. 2022; 4(1): 76-88. DOI: 10.1007/s42765-021-00090-y
18.    Monteiro N, Martins M, Martins A, Fonseca NA, Moreira JN, Reis RL, Neves NM. Antibacterial activity of chitosan nanofiber meshes with liposomes immobilized releasing gentamicin. Actabiomaterialia. 2015; 18: 196-205. DOI: 10.1016/j.actbio.2015.02.018
19.    Moser A, Stephan R, Corti S, Lehner A. Resistance profiles and genetic diversity of Escherichia coli strains isolated from acute bovine mastitis. Schweizer Archivfür Tierheilkunde. 2013; 155(6): 351-8. DOI: 10.1024/0036-7281/a000470
20.    Rapoport N, Smirnov AI, Pitt WG, Timoshin AA. Bioreduction of tempone and spin-labeled gentamicin by gram-negative bacteria: kinetics and effect of ultrasound. Archives of Biochemistry and Biophysics. 1999; 362(2): 233-41.DOI: 10.1006/abbi.1998.1020
21.    Lan Y, Li W, Jiao Y, Guo R, Zhang Y, Xue W, Zhang Y. Therapeutic efficacy of antibiotic-loaded gelatin microsphere/silk fibroin scaffolds in infected full-thickness burns. Actabiomaterialia. 2014; 10(7): 3167-76. DOI: 10.1016/j.actbio.2014.03.029
22.    Elsner JJ, Shefy‐Peleg A, Zilberman M. Novel biodegradable composite wound dressings with controlled release of antibiotics: microstructure, mechanical and physical properties. Journal of Biomedical Materials Research Part B: Applied Biomaterials. 2010 ; 93(2): 425-35.DOI: 10.1002/jbm.b.31599
23.    Martins A, Araújo JV, Reis RL, Neves NM. Electrospun nanostructured scaffolds for tissue engineering applications.Nanomedicine (Lond). 2007; 2(6): 929-42. DOI: 10.2217/17435889.2.6.929
24.    Chong EJ, Phan TT, Lim IJ, Zhang YZ, Bay BH, Ramakrishna S, Lim CT. Evaluation of electrospun PCL/gelatin nanofibrous scaffold for wound healing and layered dermal reconstitution. Actabiomaterialia. 2007; 3(3): 321-30.DOI: 10.1016/j.actbio.2007.01.002.
25.    Yu LM, Kazazian K, Shoichet MS. Peptide surface modification of methacrylamide chitosan for neural tissue engineering applications. Journal of Biomedical Materials Research Part A. 2007; 82(1): 243-55.DOI: 10.1002/jbm.a.31069
26.    Gubernator J, Drulis-Kawa Z, Dorotkiewicz-Jach A, Doroszkiewicz W, Kozubek A. In vitro antimicrobial activity of liposomes containing ciprofloxacin, meropenem and gentamicin against gram-negative clinical bacterial strains. Letters in Drug Design & Discovery. 2007; 4(4): 297-304. DOI: 10.2174/157018007784620040
27.    Kovács E, Savopol T, Iordache MM, Săplăcan L, Sobaru I, Istrate C, Mingeot-Leclercq MP, Moisescu MG. Interaction of gentamicin polycation with model and cell membranes. Bioelectrochemistry. 2012; 87: 230-5. DOI: 10.1016/j.bioelechem.2012.03.001
28.    Mugabe C, Azghani AO, Omri A. Liposome-mediated gentamicin delivery: development and activity against resistant strains of Pseudomonas aeruginosa isolated from cystic fibrosis patients. Journal of Antimicrobial Chemotherapy. 2005; 55(2): 269-71. DOI: 10.1093/jac/dkh518
29.    Ulbrich W, Lamprecht A. Targeted drug-delivery approaches by nanoparticulate carriers in the therapy of inflammatory diseases. Journal of The Royal Society Interface. 2010 ;7(suppl_1):S55-66. DOI: 10.1098/rsif.2009.0285.focus
30.    Ellbogen MH, Olsen KM, Gentry-Nielsen MJ, Preheim LC. Efficacy of liposome-encapsulated ciprofloxacin compared with ciprofloxacin and ceftriaxone in a rat model of pneumococcal pneumonia. Journal of Antimicrobial Chemotherapy. 2003; 51(1): 83-91.DOI: 10.1093/jac/dkg024
31.    Cordeiro C, Wiseman DJ, Lutwyche P, Uh M, Evans JC, Finlay BB, Webb MS. Antibacterial efficacy of gentamicin encapsulated in pH-sensitive liposomes against an in vivo Salmonella entericaserovartyphimurium intracellular infection model. Antimicrobial agents and Chemotherapy. 2000; 44(3): 533-9. DOI: 10.1128/AAC.44.3.533-539.2000
32.    Drulis-Kawa Z, Gubernator J, Dorotkiewicz-Jach A, Doroszkiewicz W, Kozubek A. A comparison of the in vitro antimicrobial activity of liposomes containing meropenem and gentamicin. Cellular and Molecular Biology Letters. 2006 ; 11(3): 360-75. DOI: 10.2478/s11658-006-0030-6
33.    Contardi M, Heredia-Guerrero JA, Perotto G, Valentini P, Pompa PP, Spanò R, Goldoni L, Bertorelli R, Athanassiou A, Bayer IS. Transparent ciprofloxacin-povidone antibiotic films and nanofiber mats as potential skin and wound care dressings. European Journal of Pharmaceutical Sciences. 2017; 104: 133-44. DOI: 10.1016/j.ejps.2017.03.044
34.    Anand U, Kurup L, Mukherjee S. Deciphering the role of pH in the binding of ciprofloxacin hydrochloride to bovine serum albumin. Physical Chemistry Chemical Physics. 2012; 14(12): 4250-8. DOI: 10.1039/c2cp00001f
35.    Aranaz I, Gutiérrez MC, Yuste L, Rojo F, Ferrer ML, Del Monte F. Controlled formation of the anhydrous polymorph of ciprofloxacin crystals embedded within chitosan scaffolds: Study of the kinetic release dependence on crystal size. Journal of Materials Chemistry. 2009; 19(11): 1576-82. DOI:https://doi.org/10.1039/B813156B
36.    Baker DS, Waldrop B, Arnold J. Compatibility and stability of cefotaxime, vancomycin, and ciprofloxacin in antibiotic lock solutions containing heparin. International Journal of Pharmaceutical Compounding. 2010; 14(4): 346-9. PMID: 23965543.
37.    Bhattacharya S, Sharma DK, Saurabh S, De S, Sain A, Nandi A, Chowdhury A. Plasticization of poly (vinylpyrrolidone) thin films under ambient humidity: Insight from single-molecule tracer diffusion dynamics. The Journal of Physical Chemistry B. 2013; 117(25): 7771-82. DOI: 10.1021/jp401704e
38.    Yang J, Wang K, Yu DG, Yang Y, Bligh SW, Williams GR. Electrospun Janus nanofibers loaded with a drug and inorganic nanoparticles as an effective antibacterial wound dressing. Materials Science and Engineering: C. 2020; 111: 110805.DOI: 10.1016/j.msec.2020.110805
39.    Borges LG, Savi A, Teixeira C, de Oliveira RP, De Camillis ML, Wickert R, Brodt SF, Tonietto TF, Cremonese R, da Silva LS, Gehm F. Mechanical ventilation weaning protocol improves medical adherence and results. Journal of Critical Care. 2017; 41: 296-302.DOI: 10.1016/j.jcrc.2017.07.014
40.    Gol S, Pena RN, Rothschild MF, Tor M, Estany J. A polymorphism in the fatty acid desaturase-2 gene is associated with the arachidonic acid metabolism in pigs. Scientific Reports. 2018; 8(1): 1-9.DOI: 10.1038/s41598-018-32710-w
41.    Loo Y, Wong YC, Cai EZ, Ang CH, Raju A, Lakshmanan A, Koh AG, Zhou HJ, Lim TC, Moochhala SM, Hauser CA. Ultrashort peptide nanofibrous hydrogels for the acceleration of healing of burn wounds. Biomaterials. 2014; 35(17): 4805-14. DOI: 10.1016/j.biomaterials.2014.02.047
42.    Tian H, Tang Z, Zhuang X, Chen X, Jing X. Biodegradable synthetic polymers: Preparation, functionalization and biomedical application. Progress in Polymer Science. 2012; 37(2): 237-80. DOI:10.1016/j.progpolymsci.2011.06.004
43.    Gizdavic‐Nikolaidis M, Ray S, Bennett JR, Easteal AJ, Cooney RP. Electrospun functionalized polyaniline copolymer‐based nanofibers with potential application in tissue engineering. Macromolecular Bioscience. 2010; 10(12): 1424-31. PMID20842683
44.    Zhang YZ, Venugopal J, Huang ZM, Lim CT, Ramakrishna S. Crosslinking of the electrospun gelatin nanofibers. Polymer. 2006; 47(8): 2911-7.https://doi.org/10.1016/j.polymer.2006.02.046
45.    Rho KS, Jeong L, Lee G, Seo BM, Park YJ, Hong SD, Roh S, Cho JJ, Park WH, Min BM. Electrospinning of collagen nanofibers: effects on the behavior of normal human keratinocytes and early-stage wound healing. Biomaterials. 2006; 27(8): 1452-61.DOI: 10.1016/j.biomaterials.2005.08.004
46.    Mo XM, Xu CY, Kotaki ME, Ramakrishna S. Electrospun P (LLA-CL) nanofiber: a biomimetic extracellular matrix for smooth muscle cell and endothelial cell proliferation. Biomaterials. 2004; 25(10): 1883-90. DOI: 10.1016/j.biomaterials.2003.08.042
47.    Di Martino A, Sittinger M, Risbud MV. Chitosan: a versatile biopolymer for orthopaedic tissue-engineering. Biomaterials. 2005; 26(30): 5983-90.DOI: 10.1016/j.biomaterials.2005.03.016
48.    Oren R, Sfez R, Korbakov N, Shabtai K, Cohen A, Erez H, Dormann A, Cohen H, Shappir J, Spira ME, Yitzchaik S. Electrically conductive 2D-PAN-containing surfaces as a culturing substrate for neurons. Journal of Biomaterials Science, Polymer Edition. 2004; 15(11): 1355-74. DOI: 10.1163/1568562042368077
49.    Hannon GJ. RNA interference. nature. 2002 Jul;418(6894):244-51.DOI: 10.1038/418244a
50.    Pavlovich AL, Manivannan S, Nelson CM. Adipose stroma induces branching morphogenesis of engineered epithelial tubules. Tissue Engineering Part A. 2010; 16(12): 3719-26. DOI: 10.1089/ten.TEA.2009.0836
51.    Madsen SM, Westh H, Danielsen L, Rosdahl VT. Bacterial colonization and healing of venous leg ulcers. Apmis. 1996; 104(7‐8): 895-9. DOI: 10.1111/j.1699-0463.1996.tb04955.x
52.    Robson MC. Wound infection: a failure of wound healing caused by an imbalance of bacteria. Surgical Clinics of North America. 1997; 77(3): 637-50.DOI: 10.1016/s0039-6109(05)70572-7
53.    Wright JB. The comparative efficacy of two antimicrobial barrier dressings: in-vitro examination of two controlled release silver dressings. Wounds. 1998; 10: 179-88.
54.    Klasen HJ. A historical review of the use of silver in the treatment of burns. II. Renewed interest for silver. Burns. 2000; 26(2): 131-8. DOI: 10.1016/s0305-4179(99)00116-3
55.    Fox CL. Silver sulfadiazine—a new topical therapy for pseudomonas in burns: therapy of pseudomonas infection in burns. Archives of Surgery. 1968; 96(2): 184-8. DOI: 10.1001/archsurg.1968.01330200022004
56.    Wilkinson LJ, White RJ, Chipman JK. Silver and nanoparticles of silver in wound dressings: a review of efficacy and safety. Journal of Wound Care. 2011; 20(11): 543-9. DOI: 10.12968/jowc.2011.20.11.543
57.    Kirsner RS. Matrix metalloproteinases in normal and impaired wound healing: a potential role of nanocrystalline silver. Wounds, C. 2002;13(3):4-12.
58.    Wright JB, Lam K, Buret AG, Olson ME, Burrell RE. Early healing events in a porcine model of contaminated wounds: effects of nanocrystalline silver on matrix metalloproteinases, cell apoptosis, and healing. Wound Repair and Regeneration. 2002; 10(3): 141-51. DOI: 10.1046/j.1524-475x.2002.10308.x
59.    Lansdown AB. Silver in health care: antimicrobial effects and safety in use. Biofunctional Textiles and The Skin. 2006; 33: 17-34. DOI: 10.1159/000093928
60.    Ahmed FE, Lalia BS, Hashaikeh R. A review on electrospinning for membrane fabrication: Challenges and applications. Desalination. 2015; 356: 15-30. https://doi.org/10.1016/j.desal.2014.09.033.
61.    Al-Attabi R, Rodriguez-Andres J, Schütz JA, Bechelany M, Des Ligneris E, Chen X, Kong L, Morsi YS, Dumee LF. Catalytic electrospunnano-composite membranes for virus capture and remediation. Separation and Purification Technology. 2019; 229: 115806.DOI: 10.1002/adem.201700572
62.    Barhate RS, Ramakrishna S. Nanofibrous filtering media: filtration problems and solutions from tiny materials. Journal of Membrane Science. 2007; 296(1-2): 1-8. https://doi.org/10.1016/j.memsci.2007.03.038
63.    Frenot A, Chronakis IS. Polymer nanofibers assembled by electrospinning. Current opinion in colloid & interface science. 2003; 8(1): 64-75. http://dx.doi.org/10.1016/S1359-0294(03)00004-9
64.    Yoon K, Kim K, Wang X, Fang D, Hsiao BS, Chu B. High flux ultrafiltration membranes based on electrospunnanofibrous PAN scaffolds and chitosan coating. Polymer. 2006; 47(7): 2434-41. DOI: 10.1016/j.polymer.2006.01.042
65.    MullaTS.,Thorat MS, Rayate Y, Nitalikar M . Liposome as a Drug Carrier. Asian J. Res. Pharm. Sci. 2019; 9(2): 141-147. DOI: 10.5958/2231-5659.2019.00021.3

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags


Not Available