Author(s): Syazili Mustofa, Andi Nafisah Tendri Adjeng, Evi Kurniawaty, Lovina Ramadhita, Tania Tamara

Email(s): syazili.mustofa@fk.unila.ac.id

DOI: 10.52711/0974-360X.2024.00062   

Address: Syazili Mustofa1*, Andi Nafisah Tendri Adjeng2, Evi Kurniawaty1, Lovina Ramadhita1, Tania Tamara1
1Department of Biochemistry Physiology and Molecular Biology, Faculty of Medicine, Universitas Lampung, Bandar Lampung, 35145, Indonesia.
2Department of Pharmacy, Faculty of Medicine, Universitas Lampung, Bandar Lampung, 35145, Indonesia.
3Department of Medical Profession Program, Faculty of Medicine, Universitas Lampung, Bandar Lampung, 35145, Indonesia.
*Corresponding Author

Published In:   Volume - 17,      Issue - 1,     Year - 2024


ABSTRACT:
Background:Hypercholesterolemia is a lipid metabolic condition associated with cardiovascular disease (CVD), the leading cause of death worldwide. Rhizophora apiculata is a plant that grows along the Indonesian coast and may provide significant support for using traditional medicine. Bioactive molecules extracted from Rhizophora apiculta can be used in supplementary medicines and considered to be an alternative way to address the ever-increasing requirements of novel drugs. More research is needed to substantiate the usage of Rhizophora apiculate astraditional medicine.This study aims to investigate the effects of Rhizophora apiculata barks (RAB) ethanolic extract on lipid metabolism, namely Total Cholesterol (TC), Triglyceride (TG), LDL, and HDL levels in mice fed a high-cholesterol diet (HCD). Methods: The study comprised 30 white male rats (Rattus norvegicus) of the Sprague Dawley strain, aged 2-3 months and weighing 200-250 grams. Six groups of mice (n = 5) were formed. Group 1 was fed a conventional diet; Group 2 was given the High-Cholesterol Diet (HCD); Group 3 was given HCD and simvastatin 40 mg/kgbwt (p.o. ); and Groups 4, 5, and 6 were treated with HCD and RAB extract 56.55 mg/kgbwt (p.o.), RAB 28.28 mg/kgbwt (p.o.), and RAB 14.14 mg/kgbwt. All of the treatments began on the same day and lasted 30 days. Results: RAB-treated animal groups (56.55; 28.28; and 14.14 mg/kgbwt) had markedly lessened TC levels by 41.18%, 35.57%, and 9.24%, respectively; TG levels declined by 45.85%; 43.77%; and 27.74%, respectively; LDL levels reduced by 26.08%; 16.55%; and 11.21%, respectively; and HDL levels increased by 19.37%; 15.12%; and 13.21%, respectively. Conclusion: RAB-treated animal groups (56.55; 28.28; and 14.14 mg/kg) had markedly lessened total cholesterol, triglyceride, LDL and increased HDL levels (p < 0.01) related to the HCD alone batch. These findings imply that the ethanolic extract of Rhizophora apiculata barks influences lipid metabolism and has potency as traditional medicine.


Cite this article:
Syazili Mustofa, Andi Nafisah Tendri Adjeng, Evi Kurniawaty, Lovina Ramadhita, Tania Tamara. Influence of Rhizophora apiculata barks extract on Cholesterol, Triglyceride, LDL, and HDL Levels of Rattus norvegicus (Sprague Dawley) fed high-cholesterol diet. Research Journal of Pharmacy and Technology. 2024; 17(1):396-0. doi: 10.52711/0974-360X.2024.00062

Cite(Electronic):
Syazili Mustofa, Andi Nafisah Tendri Adjeng, Evi Kurniawaty, Lovina Ramadhita, Tania Tamara. Influence of Rhizophora apiculata barks extract on Cholesterol, Triglyceride, LDL, and HDL Levels of Rattus norvegicus (Sprague Dawley) fed high-cholesterol diet. Research Journal of Pharmacy and Technology. 2024; 17(1):396-0. doi: 10.52711/0974-360X.2024.00062   Available on: https://rjptonline.org/AbstractView.aspx?PID=2024-17-1-62


REFERENCES:
1.    Jadhav KL, Kapare PR, Khairmode D V, et al. Genetic Insights of Cholesterol and Atherosclerosis: Complex Biology. Asian Journal of Pharmaceutical Research. 2018; 8(3): 175-184. doi:https://doi.org/10.5958/2231-5691.2018.00031.X
2.    Zárate A, Manuel-Apolinar L, Saucedo R, Hernández-Valencia M, Basurto L. Hypercholesterolemia as a risk factor for cardiovascular disease: current controversial therapeutic management. Arch Med Res. 2016; 47(7): 491-495. doi:https://doi.org/10.1016/j.arcmed.2016.11.009
3.    Sweety GJ. Assess the effectiveness of cocoa powder in reducing cholesterol level among the hypertensive clients at the rural area, Medavakkam, Chennai. Asian Journal of Nursing Education and Research. 2020; 10(3): 260-264. doi:https://doi.org/10.5958/2349-2996.2020.00055.5
4.    Torrado-Salmerón C, Guarnizo-Herrero V, Cerezo-Garreta J, Torrado Durán G, Torrado-Santiago S. Self-micellizing technology improves the properties of ezetimibe and increases its effect on hyperlipidemic rats. Pharmaceutics. 2019; 11(12): 647. doi:https://doi.org/10.3390/pharmaceutics11120647
5.    Kumar R, Akhtar F, Rizvi SI. Hesperidin attenuates altered redox homeostasis in an experimental hyperlipidaemic model of rat. Clin Exp Pharmacol Physiol. 2020;47(4):571-582. doi:10.1111/1440-1681.13221
6.    Stewart J, McCallin T, Martinez J, Chacko S, Yusuf S. Hyperlipidemia. Pediatr Rev. 2020; 41(8): 393-402. doi:https://doi.org/10.1542/pir.2019-0053
7.    Gökçe Y, Kanmaz H, Er B, Sahin K, Hayaloglu AA. Influence of purple basil (Ocimum basilicum L.) extract and essential oil on hyperlipidemia and oxidative stress in rats fed high-cholesterol diet. Food Biosci. 2021; 43: 101228. doi:https://doi.org/10.1016/j.fbio.2021.101228
8.    Ference BA, Ginsberg HN, Graham I, et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J. 2017; 38(32): 2459-2472. doi:https://doi.org/10.1093/eurheartj/ehx144
9.    Kim YS, Kim HR, Antonisamy P, et al. Amomum villosum Lour. Fruit extract mitigates hyperlipidemia through SREBP-2/LDLR/HMGCR signaling in high-cholesterol diet-fed mice. Journal of King Saud University-Science. 2022; 34(7): 102230. doi:https://doi.org/10.1016/j.jksus.2022.102230
10.    Meng C, Liu JL, Du AL. Cardioprotective effect of resveratrol on atherogenic diet-fed rats. Int J Clin Exp Pathol. 2014;7(11):7899.
11.    Ikewuchi Jude C, Ikewuchi Catherine C. Hypocholesterolaemic Effect of Aqueous Extract of Acalypha wilkesiana ‘Godseffiana’Muell Arg on Rats Fed Egg Yolk Supplemented Diet: Implications for Cardiovascular Risk Management. Science and Tech. 2010; 2(4): 78-81.
12.    Rahim AA, Rocca E, Steinmetz J, Kassim MJ, Ibrahim MS, Osman H. Antioxidant activities of mangrove Rhizophora apiculata bark extracts. Food Chem. 2008; 107(1): 200-207. doi:https://doi.org/10.1016/j.foodchem.2007.08.005
13.    Kurniawan R, Azis S, Maulana S, et al. The cytotoxicity studies of phytosterol discovered from Rhizophora apiculata against three human cancer cell lines. J Appl Pharm Sci. 2022; 13(1): 156-162. doi:10.7324/JAPS.2023.130115
14.    Loo AY, Jain K, Darah I. Antioxidant activity of compounds isolated from the pyroligneous acid, Rhizophora apiculata. Food Chem. 2008; 107(3): 1151-1160. doi:https://doi.org/10.1016/j.foodchem.2007.09.044
15.    Vijayavel K, Anbuselvam C, Balasubramanian MP. Free radical scavenging activity of the marine mangrove Rhizophora apiculata bark extract with reference to naphthalene induced mitochondrial dysfunction. Chem Biol Interact. 2006; 163(1-2): 170-175. doi:https://doi.org/10.1016/j.cbi.2006.06.003
16.    Selvaraj G, Kaliamurthi S, Thirugnasambandan R. Effect of Glycosin alkaloid from Rhizophora apiculata in non-insulin dependent diabetic rats and its mechanism of action: In vivo and in silico studies. Phytomedicine. 2016; 23(6): 632-640. doi:https://doi.org/10.1016/j.phymed.2016.03.004
17.    Tandi J, Danthy R, Kuncoro H. Effect of ethanol extract from purple eggplant skin (Solanum melongena l) on blood glucose levels and pancreatic Β cells regeneration on white rats male hypercholesterolemia-diabetic. Res J Pharm Technol. 2019; 12(6): 2936-2942. doi:10.5958/0974-360X.2019.00494.3
18.    Sarvesh CN, Fernandes J, Janadri S, Yogesh HS, Swamy S. Antihyperlipidemic activity of Achyranthes aspera Linn leaves on cholesterol induced hyperlipidemia in rats. Res J Pharm Technol. 2017; 10(1): 200-204. doi:10.5958/0974-360X.2017.00043.9
19.    Ali NFM, Rina E, Wibowo D, Adjeng ANT. Qualitative Phytochemical Screening and Antifungal Activity of Ethanol Extract of Young Papaya Seeds (Carica papaya L.) against Candida albicans. Res J Pharm Technol. 2022; 15(9): 3936-3940. doi:10.52711/0974-360X.2022.00659
20.    Daniel AI, Gara TY, Ibrahim YO, et al. In vivo antidiabetic and antioxidant activities of chloroform fraction of Nelsonia canescens Leaf in Alloxan-induced Diabetic Rats. Pharmacological Research-Modern Chinese Medicine. 2022;3:100106. doi:https://doi.org/10.1016/j.prmcm.2022.100106
21.    Mahley RW. Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science (1979). 1988; 240(4852): 622-630. doi:10.1126/science.3283935
22.    Borggreve SE, De Vries R, Dullaart RPF. Alterations in high‐density lipoprotein metabolism and reverse cholesterol transport in insulin resistance and type 2 diabetes mellitus: role of lipolytic enzymes, lecithin: cholesterol acyltransferase and lipid transfer proteins. Eur J Clin Invest. 2003; 33(12): 1051-1069. doi:https://doi.org/10.1111/j.1365-2362.2003.01263.x
23.    Traish AM, Kypreos KE. Testosterone and cardiovascular disease: an old idea with modern clinical implications. Atherosclerosis. 2011; 214(2): 244-248. doi:https://doi.org/10.1016/j.atherosclerosis.2010.08.078
24.    Feingold KR. Lipid and Lipoprotein Metabolism. Endocrinology and Metabolism Clinics. 2022; 51(3): 437-458. doi:https://doi.org/10.1016/j.ecl.2022.02.008
25.    Ross R. Atherosclerosis—an inflammatory disease. New England journal of medicine. 1999; 340(2): 115-126. doi:10.1056/NEJM199901143400207
26.    Véniant MM, Sullivan MA, Kim SK, et al. Defining the atherogenicity of large and small lipoproteins containing apolipoprotein B100. J Clin Invest. 2000; 106(12): 1501-1510. doi:https://doi.org/10.1172/JCI10695.
27.    Lieu HD, Withycombe SK, Walker Q, et al. Eliminating atherogenesis in mice by switching off hepatic lipoprotein secretion. Circulation. 2003; 107(9): 1315-1321. doi:https://doi.org/10.1161/01.CIR.0000054781.50889.0C
28.    Gundamaraju R, Atigari DV, Sheeba DS. Evaluation of anti-obesity activity of Lantana camara var Linn on butter induced Hyperlipidemia in Rats. Research Journal of Pharmacology and Pharmacodynamics. 2012; 4(5): 315-318.
29.    Sowmya A, Ananthi T. Hypolipidemic activity of Mimosa pudica Linn on butter induced hyperlipidemia in rats. Asian J Res Pharm Sci. 2011; 1(4): 123-126.
30.    Jyoti S, Kumar PP, Kaur CD. Effect of Quisqualis indica extract on cholesterol diet induced hyperlipidemia in rats. Research Journal of Pharmacology and Pharmacodynamics. 2013; 5(6): 317-320.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags


Not Available