Author(s): Zainabur Rahmah, Hafidha Camila Arif, Alvi Milliana, Nurfianti Indriana, Ach Nashichuddin

Email(s): zainabur.rahmah@kedokteran.uin-malang.ac.id , hcamilaa@gmail.com , alvi.milliana@kedokteran.uin-malang.ac.id , nurfiindriana@kedokteran.uin-malang.ac.id , achmadnashichuddin@uin-malang.ac.id

DOI: 10.52711/0974-360X.2024.00032   

Address: Zainabur Rahmah1*, Hafidha Camila Arif2, Alvi Milliana3, Nurfianti Indriana4, Ach Nashichuddin5
1Department of Parasitology, Faculty of Medicine and Health Sciences, Universitas Islam Negeri Maulana Malik Ibrahim Malang, Indonesia.
2Medicine Study Program, Faculty of Medicine and Health Sciences, Universitas Islam Negeri Maulana Malik Ibrahim Malang, Indonesia.
3Department of Microbiology, Faculty of Medicine, and Health Sciences, Universitas Islam Negeri Maulana Malik Ibrahim Malang, Indonesia.
4Department of Obstetrics and Gynecology, Faculty of Medicine, and Health Sciences, Universitas Islam Negeri Maulana Malik Ibrahim Malang, Indonesia.
5Faculty of Science and Technology, Universitas Islam Negeri Maulana Malik Ibrahim Malang, Indonesia.
*Corresponding Author

Published In:   Volume - 17,      Issue - 1,     Year - 2024


ABSTRACT:
Background: Cerebral malaria is the most serious complication of malaria infection. Plasmodium falciparum is the most common cause of cerebral malaria. Pathomechanisms underlying the severity of cerebral malaria include parasite ability, parasitemia degree, host inflammatory response, sequestration, disruption of the blood brain barrier (BBB), and brain hypoxia. Hypoxia causes cells to produce transcription factors such as the HIF-2a protein. The development of antimalarial drugs is based on fatal complications caused by hypoxia in cerebral malaria. Thus, it is necessary to investigate the mechanism of antihypoxia in cerebral malaria using natural materials, one of which is leaves (Azadirachta indica). Methods: Inoculation of Plasmodium berghei strain ANKA in C57BL mice aged 13-16 weeks. Parasitemia calculations were performed every day from the blood of the mouse tails. Treatment was given using 96% ethanol extract from neem leaves with dose of 8mg, 12mg, and 16mg orally for 6days. As treatment comparisons, there were also negative controls, positive controls, and healthy controls. Brain tissue was isolated on the seventh day to study the expression of p>0.05). The hypothesis is tested using a one-way ANOVA test with post-hoc LSD test and Pearson's correlation test. Results: The administration of neem leaf extract significantly reduced parasitemia and hypoxia (p<0,000). Meanwhile, the correlation test revealed a very strong relationship (r=+0.732) between parasitemia and hypoxia. Conclusion: Neem leaf extract administration reduces parasitemia and prevents hypoxia in mice induced by cerebral malaria


Cite this article:
Zainabur Rahmah, Hafidha Camila Arif, Alvi Milliana, Nurfianti Indriana, Ach Nashichuddin. Prevention of Cerebral Malaria Hypoxia through administration of Neem leaves extract (Azadirachta indica) in Mice C57BL. Research Journal of Pharmacy and Technology. 2024; 17(1):201-7. doi: 10.52711/0974-360X.2024.00032

Cite(Electronic):
Zainabur Rahmah, Hafidha Camila Arif, Alvi Milliana, Nurfianti Indriana, Ach Nashichuddin. Prevention of Cerebral Malaria Hypoxia through administration of Neem leaves extract (Azadirachta indica) in Mice C57BL. Research Journal of Pharmacy and Technology. 2024; 17(1):201-7. doi: 10.52711/0974-360X.2024.00032   Available on: https://rjptonline.org/AbstractView.aspx?PID=2024-17-1-32


REFERENCES:
1.    World Health Organization, World Malaria Report. 2021, WHO, Geneva, 2021
2.    World Health Organization, World Malaria Report. 2020, WHO, Geneva, 2020
3.    Cowman AF, Healer J, Marapana D, Marsh K. Malaria: Biology and Disease. Cell. 2016; 167(3): 610–624. https://doi.org/10.1016/j.cell.2016.07.055
4.    Buck E, Finnigan NA. (2022). Malaria. StatPearls Publishing, 2022.
5.    Idro R, Marsh K, John CC, Newton CRJ. Cerebral malaria: mechanisms of brain injury and strategies for improved neurocognitive outcome. Pediatric Research. 2010; 68(4): 267-274. https://doi.org/10.1203/PDR.0b013e3181eee738
6.    Lochhead J, Movaffaghy A, Falsini B, Harding S, Riva C, Molyneux M. The effects of hypoxia on the ERG in paediatric cerebral malaria. Eye. 2010; 24(2): 259–264. https://doi.org/10.1038/eye.2009.162
7.    Mawuntu AH. Malaria serebral: cerebral malaria. Jurnal Sinaps, 2018; 1(3): 1-21.
8.    Jensen AR, Adams Y, Hviid L. Cerebral Plasmodium falciparum malaria: The role of PfEMP1 in its pathogenesis and immunity, and PfEMP1‐based vaccines to prevent it. Immunological Reviews. 2020; 293(1): 230–252. https://doi.org/10.1111/imr.12807
9.    Jameson JL, Kasper DL, Longo DL, Fauci AS, Hauser SL, Loscalzo J, Harrison’s principles of internal medicine, twentieth ed., McGraw-Hill Education, New York, 2020.
10.    Utami PD, Hadi U, Dachlan YP, Suryokusumo G, Fitri R, Yudo V. Protection against brain histopathological damage in experimental cerebral malaria models after exposure to hyperbaric oxigent. Research Journal of Pharmacy and Technology. 2021; 14(7): 3833-3838.
11.    Liang X, Arullampalam P, Yang Z, & Ming XF. Hypoxia Enhances Endothelial Intercellular Adhesion Molecule 1 Protein Level Through Upregulation of Arginase Type II and Mitochondrial Oxidative Stress. Frontiers in Physiology. 2019; 10: 1003. https://doi.org/10.3389/fphys.2019.01003
12.    Medana IM, Day NP., Roberts R, Sachanonta N, Turley H, Turner GDH. Induction of the vascular endothelial growth factor pathway in the brain of adults with fatal falciparum malaria is a non-specific response to severe disease. Histopathology. 2010; 57(2): 282–294. https://doi.org/10.1111/j.1365-2559.2010.03619.x
13.    Pribadi W & Muljono R, Resistensi Parasit Malaria terhadap Obat Malaria, Gaya Baru, Jakarta, 2004.
14.    Reddy DP, Bhanja SB, Chauhan AK, Kumar BK, Panda DS, Panigrahi BB. Methanolic extraction, formulation, and evaluation of herbal transdermal patches of Azadirachta indica A. juss. Research Journal of Pharmacy and Technology. 2021; 14(7): 3709-3715.
15.    Banik B, Barman J, Dutta MP, Bhowmick N. Development and evaluation of herbal mosquito repellent Cream. Research Journal of Pharmacy and Technology. 2021; 14(12): 6262-6268.
16.    Bhamare UU, Mali YS, Shaikh AZ. Neem: As a natural medicine. Research Journal of Pharmacognosy and Phytochemistry. 2020; 12(4): 245-255.
17.    Christy S, Nivedhitha MS. Antimicrobial Efficacy of Azadirachta indica against Streptococcus mutans-An In vitro Study. Asian Journal of Pharmacy and Technology. 2019; 9(3): 149-153.
18.    Bedri S, Khalil EA, Khalid SA, Alzohairy MA, Mohieldein A, Farahna M, Azadirachta indica ethanolic extract protects neurons from apoptosis and mitigates brain swelling in experimental cerebral malaria. Malaria Journal. 2013; 12(1): 298. https://doi.org/10.1186/1475-2875-12-298
19.    Ray A. Potential properties, used, and scope of Azadirachta indica in human health care. Research Journal of Science and Technology. 2012; 4(2): 55-58.
20.    Farahna M, Bedri S, Khalid S, Idris M, Pillai C R, Khalil EA, Anti-plasmodial effects of Azadirachta indica in experimental cerebral malaria: Apoptosis of cerebellar Purkinje cells of mice as a marker. North American Journal of Medical Sciences. 2010; 2(11): 518–525. https://doi.org/10.4297/najms.2010.2518
21.    Gajendra P, Mitra M. Association of Thrombocytopenia with Severity of Plasmodium falciparum Malaria: A Study in Chhattisgarh. Research Journal of Pharmacy and Technology. 2014; 7(9): 1029-1033.
22.    Ramadani AP. Doctoral dissertation, Various antimalarial strategies in Indonesia to fight Plasmodium falciparum, Université Paul Sabatier-Toulouse III, 2017.
23.    Siswantoro H, Hasugian AR, Avrina R, Risniati Y, Efikasi Dan Keamanan Dihidroartemisininpiperakuin (DHP) Pada Penderita Malaria Falsiparum Tanpa Komplikasi di Kalimantan dan Sulawesi. Media Penelitian dan Pengembangan Kesehatan, 2011; 21(3).
24.    Alshawsh MA, Mothana RA, Al-Shamahy HA, Alsllami SF, Lindequist U. Assessment of antimalarial activity against Plasmodium falciparum and phytochemical screening of some Yemeni medicinal plants. Evidence-based complementary and alternative medicine: eCAM. 2009; 6(4): 453–456. https://doi.org/10.1093/ecam/nem148
25.    van-Wolfswinkel ME, de Mendonça Melo M, Vliegenthart-Jongbloed K, Koelewijn R, van Hellemond JJ, van Genderen PJ. The prognostic value of schizontaemia in imported Plasmodium falciparum malaria. Malaria Journal. 2012; 11: 301. https://doi.org/10.1186/1475-2875-11-301
26.    Sardjono TW & Fitri LE, Kupas Bahas Ringkas tentang Malaria, Universitas Brawijaya Press, Malang, 2019.
27.    Taylor T & Agbenyega T. Malaria. Hunter’s Tropical Medicine and Emerging Infectious Disease. 2013; 695–717.
28.    Wylie M & Merrell D. The Antimicrobial Potential of the Neem Tree Azadirachta indica. Frontiers in Pharmacology. 2022; 13. https://doi.org/10.3389/fphar.2022.891535
29.    Tepongning RN, Mbah JN, Avoulou FL, Jerme MM, Ndanga EK, Fekam FB. Hydroethanolic Extracts of Erigeron floribundus and Azadirachta indica Reduced Plasmodium berghei Parasitemia in Balb/c Mice. Evidence-based Complementary and Alternative Medicine: eCAM. 2018; 2: 1-12. https://doi.org/10.1155/2018/5156710
30.    Akin-Osanaiya BC, Nok AJ, Ibrahim S, Inuwa HM, Onyike E, Amlabu E, Haruna E. Antimalarial effect of neem leaf and neem stem bark extracts on Plasmodium berghei infected in the pathology and treatment of malaria. International Journal of Research in Biochemistry and Biophysics. 2013; 3(1): 7-14.
31.    Rénia L, Howland SW, Claser C, Charlotte-Gruner A, Suwanarusk R, Hui-Teo T, Russell B, Ng LF. Cerebral malaria: mysteries at the blood-brain barrier. Virulence. 2012; 3(2); 193–201. https://doi.org/10.4161/viru.19013
32.    Lourembam SD, Sawian CE, Baruah S. Dysregulation of cytokines expression in complicated falciparum malaria with increased TGF-β and IFN-γ and decreased IL-2 and IL-12. Cytokine. 2013; 64(2): 503-508. https://doi.org/10.1016/j.cyto.2013.08.007
33.    Fitri LE and Cahyani WA, Patologi Malaria: Tinjauan Histologis, Imunologis, dan Ultrastruktur, Universitas Brawijaya Press, Malang, 2022.
34.    Canavese M & Spaccapelo R. Protective or pathogenic effects of vascular endothelial growth factor (VEGF) as potential biomarker in cerebral malaria. Pathogens and Global Health. 2014; 108(2): 67-75. https://doi.org/10.1179/2047773214y.0000000130
35.    Bartoszewski R, Moszyńska A, Serocki M, Cabaj A, Polten A, Ochocka R, Dell'Italia L, Bartoszewska S, Króliczewski J, Dąbrowski M, Collawn JF. Primary endothelial cell-specific regulation of hypoxia-inducible factor (HIF)-1 and HIF-2 and their target gene expression profiles during hypoxia. FASEB journal: official publication of the Federation of American Societies for Experimental Biology. 2019; 33(7): 7929–7941. https://doi.org/10.1096/fj.201802650RR
36.    Zhu C, Yu J, Pan Q, Yang J, Hao G, Wang Y, Cao H. Hypoxia-inducible factor-2 alpha promotes the proliferation of human placenta-derived mesenchymal stem cells through the MAPK/ERK signaling pathway. Scientific Reports. 2019; 6(1): 1-13. https://doi.org/10.1038/srep35489
37.    Hempel C, Combes V, Hunt NH, Kurtzhals JAL, Grau GER. CNS hypoxia is more pronounced in murine cerebral than noncerebral malaria and is reversed by erythropoietin. The American Journal of Pathology. 2011; 179(4): 1939-1950. https://doi.org/10.1016%2Fj.ajpath.2011.06.027
38.    Downes NL, Laham-Karam N, Kaikkonen MU, Ylä-Herttuala S. Differential but complementary HIF1α and HIF2α transcriptional regulation. Molecular Therapy. 2018; 26(7): 1735-1745. https://doi.org/10.1016/j.ymthe.2018.05.004
39.    Stavik B, Espada S, Cui XY, Iversen N, Holm S, Mowinkel MC, Sandset PM. EPAS1/HIF-2 alpha-mediated downregulation of tissue factor pathway inhibitor leads to a pro-thrombotic potential in endothelial cells. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease. 2016; 1862(4): 670-678. https://doi.org/10.1016/j.bbadis.2016.01.017
40.    Talks KL, Turley H, Gatter KC, Maxwell PH, Pugh CW, Ratcliffe PJ, Harris AL. The expression and distribution of the hypoxia-inducible factors HIF-1alpha and HIF-2alpha in normal human tissues, cancers, and tumor-associated macrophages. The American Journal of Pathology. 2000; 157(2): 411–421. https://doi.org/10.1016/s0002-9440(10)64554-3
41.    Yanpallewar S, Rai S, Kumar M, Chauhan S, Acharya SB. Neuroprotective effect of Azadirachta indica on cerebral post-ischemic reperfusion and hypoperfusion in rats. Life Sciences. 2005; 76(12): 1325-1338. https://doi.org/10.1016/j.lfs.2004.06.029
42.    Chauhan R, Patel C, Panigrahi J. Greener approach for copper nanoparticles synthesis from Catharanthus roseus and Azadirachta indica leaf extract and their antibacterial and antioxidant activities. Asian Journal of Research in Pharmaceutical Science. 2018; 8(2): 81-90. https://doi.org/10.5958/2231-5659.2018.00016.4
43.    Batmomolin A, Khotimah H, Ahsan A, Wiyasa I, Santoso S. Effects of quercetin and kaempferol (Main Compound of Moringa oleifera leaves) improve IUGR through decreased hypoxia. Research Journal of Pharmacy and Technology. 2020; 13(12): 5831-5836.
44.    Selvi PT, Kumar MS, Yaswanth T, Adiyaman E, Anusha PT. Central nervous system depressant activity of aqueous extract of leaves of Azadirachta indica Linn in mice. Asian Journal of Research in Pharmaceutical Science. 2012; 2(3): 97-99.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags


Not Available